BdG Equations on a Lattice

4－1 Self－consistent BdG Equations

A．EQUATIONS OF MOTION

（1）The BCS Hamiltonian on lattice
$\widehat{H}=\sum_{i j \sigma}\left(-t_{i j} \hat{c}_{i \sigma}^{\dagger} \hat{c}_{j \sigma}-\tilde{t}_{i j}^{*} \hat{c}_{j \sigma}^{\dagger} \hat{c}_{i \sigma}\right)+\sum_{i j}\left(\Delta_{i j} \hat{c}_{i \uparrow}^{\dagger} \hat{c}_{j \downarrow}^{\dagger}+\Delta_{i j}^{*} \hat{c}_{j \downarrow} \hat{c}_{i \uparrow}\right)$
Since the Hamiltonian should be a Hermitian operator，i．e．，
$\widehat{H}^{\dagger}=\widehat{H} \Rightarrow t_{i j}^{*}=t_{j i}$ and $\Delta_{i j}^{*}=\Delta_{j i}$
（2）The equations of motion
Let the imaginary time $\tau=i t$
$-\frac{\partial}{\partial \tau} \hat{c}_{i \sigma}=\left[\hat{c}_{i \sigma}, \widehat{H}\right]$
$-\frac{\partial}{\partial \tau} \hat{c}_{i \sigma}^{\dagger}=\left[\hat{c}_{i \sigma}^{\dagger}, \widehat{H}\right]$
OS：

$$
\begin{aligned}
& {[a, b c]=\{a, b\} c-b\{a, c\}} \\
& {[a b, c]=a\{b, c\}-\{a, c\} b} \\
& {\left[\hat{c}_{i \sigma}, \widehat{H}\right]=\sum_{u v}\left[\hat{c}_{i \sigma},-t_{u v} \hat{c}_{u \sigma}^{\dagger} \hat{c}_{v \sigma}-t_{u v}^{*} \hat{c}_{v \sigma}^{\dagger} \hat{c}_{u \sigma}+\Delta_{u v} \hat{c}_{u \sigma}^{\dagger} \hat{c}_{v \bar{\sigma}}^{\dagger}\right]} \\
& =\sum_{u v}-t_{u v} \hat{c}_{v \sigma} \delta_{i u}-t_{u v}^{*} \hat{c}_{u \sigma} \delta_{i v}+\sigma \Delta_{u v} \hat{c}_{v \bar{\sigma}}^{\dagger} \delta_{i u} \\
& =\sum_{j}-2 t_{i j} \hat{c}_{j \sigma}+\sigma \Delta_{i j} \hat{c}_{j \bar{\sigma}}^{\dagger} \\
& \xrightarrow{2 t \rightarrow t} \sum_{j}-t_{i j} \hat{c}_{j \sigma}+\sigma \Delta_{i j} \hat{c}_{j \bar{\sigma}}^{\dagger}
\end{aligned}
$$

$$
\begin{aligned}
{\left[\hat{c}_{i \sigma}^{\dagger}, \widehat{H}\right] } & =\sum_{u v}\left[\hat{c}_{i \sigma}^{\dagger},-t_{u v} \hat{c}_{u \sigma}^{\dagger} \hat{c}_{v \sigma}-t_{u v}^{*} \hat{c}_{v \sigma}^{\dagger} \hat{c}_{u \sigma}+\Delta_{u v}^{*} c_{v \bar{\sigma}} c_{u \sigma}\right] \\
& =\sum_{u v} t_{u v} \hat{c}_{u \sigma}^{\dagger} \delta_{i v}+t_{u v}^{*} \hat{c}_{v \sigma}^{\dagger} \delta_{i u}-\sigma \Delta_{u v}^{*} c_{v \bar{\sigma}} \delta_{i u} \\
& =\sum_{j} 2 t_{i j}^{*} \hat{c}_{j \sigma}^{\dagger}-\sigma \Delta_{i j}^{*} c_{v \bar{\sigma}} \\
& \xrightarrow{2 t \rightarrow t} \sum_{j} t_{i j}^{*} \hat{c}_{j \sigma}^{\dagger}-\sigma \Delta_{i j}^{*} c_{v \bar{\sigma}}
\end{aligned}
$$

B．BOGOLIUBOV TRANSFORMATION

（1）Bogoliubov transformations

$$
\begin{aligned}
& \hat{c}_{i \sigma}=\sum_{n}\left(u_{i}^{n} \hat{\gamma}_{n \sigma}-\sigma v_{i}^{n *} \hat{\gamma}_{n \bar{\sigma}}^{\dagger}\right) \\
& \hat{c}_{i \sigma}^{\dagger}=\sum_{n}\left(u_{i}^{n *} \hat{\gamma}_{n \sigma}^{\dagger}-\sigma v_{i}^{n} \hat{\gamma}_{n \bar{\sigma}}\right)
\end{aligned}
$$

which are linear transformations of creation and annihilation operators that preserve the anticommutation relation，i．e．，
$\hat{\gamma}_{n \sigma} \hat{\gamma}_{n \sigma}^{\dagger}+\hat{\gamma}_{n \sigma}^{\dagger} \hat{\gamma}_{n \sigma}=1$
（2）The Bogoliubov transformation in matrix form，

$$
\left(\begin{array}{c}
\hat{c}_{1 \uparrow} \\
\vdots \\
\hat{c}_{N \uparrow} \\
\hat{c}_{1 \downarrow}^{\dagger} \\
\vdots \\
\hat{c}_{N \downarrow}^{\dagger}
\end{array}\right)=\left(\begin{array}{cccccc}
u_{1}^{1} & \cdots & u_{1}^{N} & -v_{1}^{1 *} & \cdots & -v_{1}^{N *} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
u_{N}^{1} & \cdots & u_{N}^{N} & -v_{N}^{1 *} & \cdots & -v_{N}^{N *} \\
v_{1}^{1} & \cdots & v_{1}^{N} & u_{1}^{1 *} & \cdots & u_{1}^{N *} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
v_{N}^{1} & \cdots & v_{N}^{N} & u_{N}^{1 *} & \cdots & u_{N}^{N *}
\end{array}\right)\left(\begin{array}{c}
\hat{\gamma}_{1 \uparrow} \\
\vdots \\
\hat{\gamma}_{N \uparrow} \\
\hat{\gamma}_{1 \downarrow}^{\dagger} \\
\vdots \\
\hat{\gamma}_{N \downarrow}^{\dagger}
\end{array}\right)
$$

the transformation matrix is a $2 N \times 2 N$ matrix．
Let

$$
\begin{aligned}
& \mathrm{c}_{\uparrow}=\left(\begin{array}{c}
\hat{c}_{1 \uparrow} \\
\vdots \\
\hat{c}_{N \uparrow}
\end{array}\right), \quad \mathrm{c}_{\downarrow}^{\dagger}=\left(\begin{array}{c}
\hat{c}_{1 \downarrow}^{\dagger} \\
\vdots \\
\hat{c}_{N \downarrow}^{\dagger}
\end{array}\right) \\
& \mathrm{u}=\left(\begin{array}{ccc}
u_{1}^{1} & \cdots & u_{1}^{N} \\
\vdots & \ddots & \vdots \\
u_{N}^{1} & \cdots & u_{N}^{N}
\end{array}\right), \quad \mathrm{v}=\left(\begin{array}{ccc}
v_{1}^{1} & \cdots & v_{1}^{N} \\
\vdots & \ddots & \vdots \\
v_{N}^{1} & \cdots & v_{N}^{N}
\end{array}\right)
\end{aligned}
$$

$$
\gamma_{\uparrow}=\left(\begin{array}{c}
\hat{\gamma}_{1 \uparrow} \\
\vdots \\
\hat{\gamma}_{N \uparrow}
\end{array}\right), \quad \gamma_{\downarrow}^{\dagger}=\left(\begin{array}{c}
\hat{\gamma}_{\downarrow \downarrow}^{\dagger} \\
\vdots \\
\hat{\gamma}_{N \downarrow}^{\dagger}
\end{array}\right)
$$

The Bogoliubov transformation can be simplified as，
$\binom{c_{\uparrow}}{c_{\downarrow}^{\dagger}}=\left(\begin{array}{cc}u & -v^{*} \\ v & u^{*}\end{array}\right)\binom{\gamma_{\uparrow}}{\gamma_{\downarrow}^{\dagger}}$
（3）Since

$$
\begin{aligned}
\left(\begin{array}{cc}
u & -v^{*} \\
v & u^{*}
\end{array}\right)\left(\begin{array}{cc}
u & -v^{*} \\
v & u^{*}
\end{array}\right)^{\dagger} & =\left(\begin{array}{cc}
u & -v^{*} \\
v & u^{*}
\end{array}\right)\left(\begin{array}{cc}
u^{*} & v^{*} \\
-v & u
\end{array}\right) \\
& =\left(\begin{array}{cc}
|u|^{2}+|v|^{2} & u v^{*}-v^{*} u \\
v u^{*}-u^{*} v & |u|^{2}+|v|^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
&|\mathrm{u}|^{2}+|\mathrm{v}|^{2}=\mathbf{1} \Rightarrow \sum_{n}\left(\left|u_{i}^{n}\right|^{2}+\left|v_{i}^{n}\right|^{2}\right)=1 \cdots \cdot(\mathrm{a}) \\
& \mathrm{uv}^{*}-\mathrm{v}^{*} \mathrm{u}=\mathbf{0} \Rightarrow \sum_{n}^{n}\left(u_{i}^{n} v_{i}^{n *}-v_{i}^{n *} u_{i}^{n}\right)=0 \cdots \cdot(\mathrm{~b}) \\
& \mathrm{vu}^{*}-\mathrm{u}^{*} \mathrm{v}=\mathbf{0} \Rightarrow \sum_{n}\left(v_{i}^{n} u_{i}^{n *}-u_{i}^{n *} v_{i}^{n}\right)=0
\end{aligned}
$$

The Bogoliubov transformation matrix is a unitary matrix，i．e．，
$\left(\begin{array}{cc}u & -v^{*} \\ v & u^{*}\end{array}\right)^{\dagger}=\left(\begin{array}{cc}u & -v^{*} \\ v & u^{*}\end{array}\right)^{-1}$

C．BdG EQUATIONS

（1）Define a spinor operator
$\psi=\binom{c_{\uparrow}}{c_{\downarrow}^{\dagger}}$
The Hamiltonian in terms of ψ and ψ^{\dagger}
$\mathbf{H}=\left(\begin{array}{llllllll}\hat{c}_{1 \uparrow}^{\dagger} & \cdots & \cdots & \hat{c}_{N \uparrow}^{\dagger} & \hat{c}_{1 \downarrow} & \cdots & \cdots & \hat{c}_{N \downarrow}\end{array}\right)$

$$
\left(\begin{array}{cccccccc}
0 & -t_{12} & \cdots & -t_{1 N} & \Delta_{11} & \cdots & \cdots & \Delta_{1 N} \\
-t_{21} & 0 & \vdots & \vdots & \vdots & \ddots & \cdots & \vdots \\
\vdots & \cdots & \ddots & \vdots & \vdots & \cdots & \ddots & \vdots \\
-t_{N 1} & \cdots & \cdots & 0 & \Delta_{N 1} & \cdots & \cdots & \Delta_{N N} \\
\Delta_{11}^{*} & \cdots & \cdots & \Delta_{1 N}^{*} & 0 & t_{12}^{*} & \cdots & t_{1 N}^{*} \\
\vdots & \ddots & \vdots & \vdots & t_{21}^{*} & 0 & \cdots & \vdots \\
\vdots & \cdots & \ddots & \vdots & \vdots & \cdots & \ddots & \vdots \\
\Delta_{N 1}^{*} & \cdots & \cdots & \Delta_{N N}^{*} & t_{N 1}^{*} & \cdots & \cdots & 0
\end{array}\right) \cdot\left(\begin{array}{c}
\hat{c}_{1 \uparrow} \\
\vdots \\
\vdots \\
\hat{c}_{N \uparrow} \\
\hat{c}_{1 \downarrow}^{\dagger} \\
\vdots \\
\vdots \\
\hat{c}_{N \downarrow}^{\dagger}
\end{array}\right)
$$

Let

$$
\begin{align*}
& \mathrm{t}=\left(\begin{array}{cccc}
0 & t_{12} & \cdots & t_{1 N} \\
t_{21} & 0 & \cdots & \vdots \\
\vdots & \cdots & \ddots & \vdots \\
t_{N 1} & \cdots & \cdots & 0
\end{array}\right), \quad \Delta=\left(\begin{array}{cccc}
\Delta_{11} & \cdots & \cdots & \Delta_{1 N} \\
\vdots & \ddots & \cdots & \vdots \\
\vdots & \cdots & \ddots & \vdots \\
\Delta_{N 1} & \cdots & \cdots & \Delta_{N N}
\end{array}\right) \\
& \mathrm{H}=\left(\begin{array}{ll}
\mathrm{c}_{\uparrow}^{\dagger} & \mathrm{c}_{\downarrow}
\end{array}\right)\left(\begin{array}{ll}
-\mathrm{t} & \Delta \\
\Delta^{*} & \mathrm{t}^{*}
\end{array}\right)\binom{\mathrm{c}_{\uparrow}}{\mathrm{c}_{\downarrow}^{\dagger}} \cdots \cdots(\mathrm{c}) \tag{c}
\end{align*}
$$

（2）Use the Bogoliubov transformation

$$
\begin{aligned}
H & =\overbrace{\left(\begin{array}{ll}
\gamma_{\uparrow}^{\dagger} & \gamma_{\downarrow}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{u} & -\mathrm{v}^{*} \\
\mathrm{v} & \mathrm{u}^{*}
\end{array}\right)^{\dagger}}^{\left(\mathrm{c}_{\uparrow}^{\dagger} \mathrm{c}_{\downarrow}\right)} \cdot\left(\begin{array}{cc}
-\mathrm{t} & \Delta \\
\Delta^{*} & \mathrm{t}^{*}
\end{array}\right) \cdot \overbrace{\left(\begin{array}{cc}
\mathrm{u} & -\mathrm{v}^{*} \\
\mathrm{v} & \mathrm{u}^{*}
\end{array}\right)\binom{\gamma_{\uparrow}}{\gamma_{\downarrow}^{\dagger}}}^{\binom{c_{\uparrow}}{c_{\downarrow}^{\dagger}}} \\
& =\left(\begin{array}{cc}
\gamma_{\uparrow}^{\dagger} & \gamma_{\downarrow}
\end{array}\right)\left(\begin{array}{cc}
\varepsilon_{\uparrow} & 0 \\
0 & -\varepsilon_{\downarrow}
\end{array}\right)\binom{\gamma_{\uparrow}}{\gamma_{\downarrow}^{\dagger}} \\
& =\sum_{\sigma} \mathrm{E}_{\sigma} \gamma_{\sigma}^{\dagger} \gamma_{\sigma}+\varepsilon_{0}
\end{aligned}
$$

where

$$
\begin{aligned}
& \left(\begin{array}{cc}
u & -v^{*} \\
v & u^{*}
\end{array}\right)^{\dagger}\left(\begin{array}{cc}
-t & \Delta \\
\Delta^{*} & t^{*}
\end{array}\right)\left(\begin{array}{cc}
u & -v^{*} \\
v & u^{*}
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
-u^{*} t u+u^{*} \Delta v+v^{*} \Delta^{*} u+v^{*} t^{*} v & u^{*} t v^{*}+u^{*} \Delta u^{*}-v^{*} \Delta^{*} v^{*}+v^{*} t^{*} u^{*} \\
v t u-v \Delta v+u \Delta^{*} u+u t^{*} v & -v t v^{*}-v \Delta u^{*}-u \Delta^{*} v^{*}+u t^{*} u^{*}
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& u^{*} t v^{*}+u^{*} \Delta u^{*}-v^{*} \Delta^{*} v^{*}+v^{*} t^{*} u^{*}=0 \\
& v t u-v \Delta v+u \Delta^{*} u+u t^{*} v=0 \\
& \mathrm{E}_{\uparrow}=-\mathrm{tu}^{2}+\Delta \mathrm{u}^{*} \mathrm{v}+\Delta^{*} \mathrm{uv}^{*}+\mathrm{t}^{*} \mathrm{v}^{2}=-\mathrm{tu}^{2}+\mathrm{t}^{*} \mathrm{v}^{2}+2 \Omega\left\{\Delta \mathrm{u}^{*} \mathrm{v}\right\} \\
& E_{\downarrow}=-t^{*} u^{2}+\Delta u^{*} v+\Delta^{*} u v^{*}+t v^{2}=-t^{*} u^{2}+t v^{2}+2 \Re\left\{\Delta u^{*} v\right\}
\end{aligned}
$$

As t is real，

$$
\mathrm{E}_{\uparrow}=-\mathrm{t}\left(\mathrm{u}^{2}+\mathrm{v}^{2}\right)+2 \mathfrak{R}\left\{\Delta \mathrm{u}^{*} \mathrm{v}\right\}=-\mathrm{t}+2 \Re\left\{\Delta \mathrm{u}^{*} \mathrm{v}\right\}
$$

$$
E_{\downarrow}=-t\left(u^{2}+v^{2}\right)+2 \Re\left\{\Delta u^{*} v\right\}=-t+2 \Re\left\{\Delta u^{*} v\right\}
$$

$$
\Rightarrow \mathrm{E}_{\uparrow}=\mathrm{E}_{\downarrow}
$$

（3）The equations of motion in terms of $\mathrm{c}_{\boldsymbol{\sigma}}$ and $\mathrm{c}_{\boldsymbol{\sigma}}^{\dagger}$

$$
\begin{aligned}
& {\left[\hat{c}_{i \sigma}, \widehat{H}\right]=\sum_{j}-t_{i j} \hat{c}_{j \sigma}+\sigma \Delta_{i j} \hat{c}_{j \bar{\sigma}}^{\dagger}} \\
& {\left[\hat{c}_{i \sigma}^{\dagger}, \widehat{H}\right]=\sum_{j} t_{i j}^{*} \hat{c}_{j \sigma}^{\dagger}-\sigma \Delta_{i j}^{*} \hat{c}_{j \bar{\sigma}}} \\
& \left.\left(\begin{array}{c}
\hat{c}_{1 \uparrow} \\
\vdots \\
\vdots \\
\hat{c}_{N \uparrow} \\
\hat{c}_{1 \downarrow}^{\dagger} \\
\vdots \\
\vdots \\
\hat{c}_{N \downarrow}^{\dagger}
\end{array}\right), \widehat{H}\right]=\left(\begin{array}{cccccccc}
0 & -t_{12} & \cdots & -t_{1 N} & \Delta_{11} & \cdots & \cdots & \Delta_{1 N} \\
-t_{21} & 0 & \vdots & \vdots & \vdots & \ddots & \cdots & \vdots \\
\vdots & \cdots & \ddots & \vdots & \vdots & \cdots & \ddots & \vdots \\
-t_{N 1} & \cdots & \cdots & 0 & \Delta_{N 1} & \cdots & \cdots & \Delta_{N N} \\
\Delta_{11}^{*} & \cdots & \cdots & \Delta_{1 N}^{*} & 0 & t_{12}^{*} & \cdots & t_{1 N}^{*} \\
\vdots & \ddots & \vdots & \vdots & t_{21}^{*} & 0 & \cdots & \vdots \\
\vdots & \cdots & \ddots & \vdots & \vdots & \cdots & \ddots & \vdots \\
\Delta_{N 1}^{*} & \cdots & \cdots & \Delta_{N N}^{*} & t_{N 1}^{*} & \cdots & \cdots & 0
\end{array}\right)\left(\begin{array}{c}
\hat{c}_{1 \uparrow} \\
\vdots \\
\vdots \\
\hat{c}_{N \uparrow} \\
\hat{c}_{1 \downarrow}^{\dagger} \\
\vdots \\
\vdots \\
\hat{c}_{N \downarrow}^{\dagger}
\end{array}\right) \\
& \Rightarrow\left[\binom{c_{\uparrow}}{c_{\downarrow}^{\dagger}}, \mathrm{H}\right]=\left(\begin{array}{cc}
-\mathrm{t} & \Delta \\
\Delta^{*} & \mathrm{t}^{*}
\end{array}\right)\binom{c_{\uparrow}}{c_{\downarrow}^{\dagger}} \cdots \cdots \text { (d) }
\end{aligned}
$$

（4）The equations of motion in terms of γ_{σ} and $\gamma_{\sigma}^{\dagger}$ R．H．S．of equation（d）：

$$
\left[\binom{c_{\uparrow}}{c_{\downarrow}^{\dagger}}, H\right]=\left[\left(\begin{array}{cc}
u & -v^{*} \\
v & u^{*}
\end{array}\right)\binom{\gamma_{\uparrow}}{\gamma_{\downarrow}^{\dagger}}, H\right]=\left(\begin{array}{cc}
u & -v^{*} \\
v & u^{*}
\end{array}\right)\left(\begin{array}{cc}
E_{\uparrow} & 0 \\
0 & -E_{\downarrow}
\end{array}\right)\binom{\gamma_{\uparrow}}{\gamma_{\downarrow}^{\dagger}}
$$

L．H．S．of equation（d）：

$$
\left(\begin{array}{cc}
-\mathrm{t} & \Delta \\
\Delta^{*} & \mathrm{t}^{*}
\end{array}\right)\binom{\mathrm{c}_{\uparrow}}{\mathrm{c}_{\downarrow}^{\dagger}}=\left(\begin{array}{cc}
-\mathrm{t} & \Delta \\
\Delta^{*} & \mathrm{t}^{*}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{u} & -\mathrm{v}^{*} \\
\mathrm{v} & \mathrm{u}^{*}
\end{array}\right)\binom{\gamma_{\uparrow}}{\gamma_{\downarrow}^{\dagger}}
$$

Thus，we obtain
$\left(\begin{array}{cc}-\mathrm{t} & \Delta \\ \Delta^{*} & \mathrm{t}^{*}\end{array}\right)\left(\begin{array}{cc}\mathrm{u} & -\mathrm{v}^{*} \\ \mathrm{v} & \mathrm{u}^{*}\end{array}\right)=\left(\begin{array}{cc}\mathrm{u} & -\mathrm{v}^{*} \\ \mathrm{v} & \mathrm{u}^{*}\end{array}\right)\left(\begin{array}{cc}\mathrm{E}_{\uparrow} & 0 \\ 0 & -\mathrm{E}_{\downarrow}\end{array}\right)$
The equations above are called the Bogoliubov－de Gennes＇（BdG） equations．
（5）Global Index in Code Implementation
From the equation（c），the Hamiltonian matrix is
$\mathbf{H}=\left(\begin{array}{ll}-\mathrm{t} & \Delta \\ \Delta^{*} & \mathrm{t}^{*}\end{array}\right)=\left(\begin{array}{cccccccc}0 & -t_{12} & \cdots & -t_{1 N} & \Delta_{11} & \cdots & \cdots & \Delta_{1 N} \\ -t_{21} & 0 & \vdots & \vdots & \vdots & \ddots & \cdots & \vdots \\ \vdots & \cdots & \ddots & \vdots & \vdots & \cdots & \ddots & \vdots \\ -t_{N 1} & \cdots & \cdots & 0 & \Delta_{N 1} & \cdots & \cdots & \Delta_{N N} \\ \Delta_{11}^{*} & \cdots & \cdots & \Delta_{1 N}^{*} & 0 & t_{12}^{*} & \cdots & t_{1 N}^{*} \\ \vdots & \ddots & \vdots & \vdots & t_{21}^{*} & 0 & \cdots & \vdots \\ \vdots & \cdots & \ddots & \vdots & \vdots & \cdots & \ddots & \vdots \\ \Delta_{N 1}^{*} & \cdots & \cdots & \Delta_{N N}^{*} & t_{N 1}^{*} & \cdots & \cdots & 0\end{array}\right)$
Declare a matrix in code implementation：
$\mathbf{H}=\left(\begin{array}{cc}-\mathrm{t} & \Delta \\ \Delta^{*} & \mathrm{t}^{*}\end{array}\right)=\left(\begin{array}{cccccc}h_{1,1} & \cdots & h_{1, N} & h_{1, N+1} & \cdots & h_{1,2 N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ h_{N, 1} & \cdots & h_{N, N} & h_{N, N+1} & \cdots & h_{N, 2 N} \\ h_{N+1,1} & \cdots & h_{N+1, N} & h_{N+1, N+1} & \cdots & h_{N+1,2 N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ h_{2 N, 1} & \cdots & h_{2 N, N} & h_{2 N, N+1} & \cdots & h_{2 N, 2 N}\end{array}\right)$
Diagonalize \mathbf{H} and obtain eigenvectors：

$$
\left(\begin{array}{cc}
\mathrm{u} & -\mathrm{v}^{*} \\
\mathrm{v} & \mathrm{u}^{*}
\end{array}\right)=\left(\begin{array}{cccccc}
u_{1}^{1} & \cdots & u_{1}^{N} & -v_{1}^{1 *} & \cdots & -v_{1}^{N *} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
u_{N}^{1} & \cdots & u_{N}^{N} & -v_{N}^{1 *} & \cdots & -v_{N}^{N *} \\
v_{1}^{1} & \cdots & v_{1}^{N} & u_{1}^{1 *} & \cdots & u_{1}^{N *} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
v_{N}^{1} & \cdots & v_{N}^{N} & u_{N}^{1 *} & \cdots & u_{N}^{N *}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{u}_{1} \\
\vdots \\
\mathbf{u}_{N} \\
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{N}
\end{array}\right)
$$

where we define the global indices

$$
\left.\begin{array}{rl}
\mathbf{u}_{i} & =(\overbrace{\mathbf{u}_{i}^{1}}^{u_{i}^{1}} \cdots \cdots \overbrace{\mathbf{u}_{i}^{N}}^{u_{\mathbf{u}_{i}^{N}}^{N+1}} \ldots \ldots \overbrace{\mathbf{u}_{i}^{2 N}}^{-v_{i}^{1 *}}
\end{array}\right)
$$

OS：
After diagonalization，we should use the normalization conditions to verify the global index as follows：

$$
\begin{aligned}
& \sum_{n}\left(\left|u_{i}^{n}\right|^{2}+\left|v_{i}^{n}\right|^{2}\right)=1 \\
& \sum_{n}^{n}\left(u_{i}^{n} v_{i}^{n *}-v_{i}^{n *} u_{i}^{n}\right)=0
\end{aligned}
$$

eigenvalues：

$$
\left(\begin{array}{cc}
\mathrm{E}_{\uparrow} & 0 \\
0 & -\mathrm{E}_{\downarrow}
\end{array}\right)=\left(\begin{array}{cccccc}
E_{1} & & & & 0 & \\
& \ddots & & & & \\
& & E_{N} & & & \\
& 0 & & E_{N+1} & \ddots & \\
& & & & & E_{2 N}
\end{array}\right)
$$

where

$$
\left(\begin{array}{c}
E_{1} \\
\vdots \\
E_{N} \\
E_{N+1} \\
\vdots \\
E_{2 N}
\end{array}\right)=\left(\begin{array}{c}
E_{1 \uparrow} \\
\vdots \\
E_{N \uparrow} \\
-E_{1 \downarrow} \\
\vdots \\
-E_{N \downarrow}
\end{array}\right)
$$

D．SELF－CONSISTENT CONDITIONS AND ORDER PARAMETERS

（1）Electron density：

$$
\begin{aligned}
\left\langle\hat{n}_{i \uparrow}\right\rangle & =\left\langle\hat{c}_{i \uparrow}^{\dagger} \hat{c}_{i \uparrow}\right\rangle \\
& =\sum_{n}\left\langle\left(u_{i}^{n *} \hat{\gamma}_{n \uparrow}^{\dagger}-v_{i}^{n} \hat{\gamma}_{n \downarrow}\right)\left(u_{i}^{n} \hat{\gamma}_{n \uparrow}-v_{i}^{n *} \hat{\gamma}_{n \downarrow}^{\dagger}\right)\right\rangle \\
& =\sum_{n}\left[\left|u_{i}^{n}\right|^{2}\left\langle\hat{\gamma}_{n \uparrow}^{\dagger} \hat{\gamma}_{n \uparrow}\right\rangle+\left|v_{i}^{n}\right|^{2}\left\langle\hat{\gamma}_{n \downarrow} \hat{\gamma}_{n \downarrow}^{\dagger}\right\rangle\right] \\
& =\sum_{n}\left[\left|u_{i}^{n}\right|^{2} f\left(E_{n \uparrow}\right)+\left|v_{i}^{n}\right|^{2} f\left(-E_{n \downarrow}\right)\right] \\
\left\langle n_{i \downarrow}\right\rangle & =\left\langle c_{i \downarrow}^{\dagger} c_{i \downarrow}\right\rangle \\
& =\sum_{n}\left\langle\left(u_{i}^{n *} \hat{\gamma}_{n \downarrow}^{\dagger}+v_{i}^{n} \hat{\gamma}_{n \uparrow}\right)\left(u_{i}^{n} \hat{\gamma}_{n \downarrow}+v_{i}^{n *} \hat{\gamma}_{n \uparrow}^{\dagger}\right)\right\rangle \\
& =\sum_{n}\left[v_{i}^{n} v_{i}^{n *}\left\langle\hat{\gamma}_{n \uparrow} \hat{\gamma}_{n \uparrow}^{\dagger}\right\rangle+u_{i}^{n *} u_{i}^{n}\left\langle\hat{\gamma}_{n \downarrow}^{\dagger} \hat{\gamma}_{n \downarrow}\right\rangle\right] \\
& =\sum_{n}\left[\left|v_{i}^{n}\right|^{2} f\left(-E_{n \uparrow}\right)+\left|u_{i}^{n}\right|^{2}\left(E_{n \downarrow}\right)\right]
\end{aligned}
$$

Using global indices，we obtain

$$
\left\langle n_{i \uparrow}\right\rangle=\sum_{n}\left[\left|u_{i}^{n}\right|^{2} f\left(E_{n \uparrow}\right)+\left|v_{i}^{n}\right|^{2} f\left(-E_{n \downarrow}\right)\right]=\sum_{n}\left|\mathbf{u}_{i}^{n}\right|^{2} f\left(E_{n}\right)
$$

$$
\left\langle n_{i \downarrow}\right\rangle=\sum_{n}\left[\left|v_{i}^{n}\right|^{2} f\left(-E_{n \uparrow}\right)+\left|u_{i}^{n}\right|^{2}\left(E_{n \downarrow}\right)\right]=\sum_{n}\left|\mathbf{v}_{i}^{n}\right|^{2}\left[1-f\left(E_{n}\right)\right]
$$

Since

$$
\left.\begin{array}{rl}
f\left(E_{n}\right) & =\frac{1}{e^{\beta E_{n}}+1} \\
& =\frac{1}{2} \frac{2}{e^{\beta E_{n}}+1} \\
& =\frac{1}{2}\left(1-\frac{e^{\beta E_{n}}-1}{e^{\beta E_{n}}+1}\right) \\
& =\frac{1}{2}\left(1-\frac{e^{\beta E_{n} / 2}-e^{-\beta E_{n} / 2}}{e^{\beta E_{n} / 2}+e^{-\beta E_{n} / 2}}\right) \\
& =\frac{1}{2}\left(1-\tanh \frac{\beta E_{n}}{2}\right)
\end{array}\right\}
$$

（2）Superconducting pairing：

$$
\begin{aligned}
& \Delta_{i j}=V\left\langle c_{i \uparrow} c_{j \downarrow}\right\rangle=\frac{V}{2}\left\langle c_{i \uparrow} c_{j \downarrow}-c_{j \downarrow} c_{i \uparrow}\right\rangle=\frac{V}{2}\left(\left\langle c_{i \uparrow} c_{j \downarrow}\right\rangle-\left\langle c_{j \downarrow} c_{i \uparrow}\right\rangle\right) \\
& \left\langle c_{i \uparrow} c_{j \downarrow}\right\rangle=\sum_{n}\left\langle\left(u_{i}^{n} \hat{\gamma}_{n \uparrow}-v_{i}^{n *} \hat{\gamma}_{n \downarrow}^{\dagger}\right)\left(u_{j}^{n} \hat{\gamma}_{n \downarrow}+v_{j}^{n *} \hat{\gamma}_{n \uparrow}^{\dagger}\right)\right\rangle \\
& =\sum_{n}\left[u_{i}^{n} v_{j}^{n *}\left\langle\hat{\gamma}_{n \uparrow} \hat{\gamma}_{n \uparrow}^{\dagger}\right\rangle-v_{i}^{n *} u_{j}^{n}\left\langle\hat{\gamma}_{n \downarrow}^{\dagger} \hat{\gamma}_{n \downarrow}\right\rangle\right] \\
& =\sum_{n}\left[u_{i}^{n} v_{j}^{n *} f\left(-E_{n \uparrow}\right)-v_{i}^{n *} u_{j}^{n} f\left(E_{n \downarrow}\right)\right] \\
& \left\langle c_{i \uparrow} c_{j \downarrow}\right\rangle=\sum_{n}^{n}\left\langle\left(u_{j}^{n} \hat{\gamma}_{n \downarrow}+v_{j}^{n *} \hat{\gamma}_{n \uparrow}^{\dagger}\right)\left(u_{i}^{n} \hat{\gamma}_{n \uparrow}-v_{i}^{n *} \hat{\gamma}_{n \downarrow}^{\dagger}\right)\right\rangle \\
& =\sum_{n}\left[-v_{j}^{n *} u_{i}^{n}\left\langle\hat{\gamma}_{n \uparrow}^{\dagger} \hat{\gamma}_{n \uparrow}\right\rangle+u_{j}^{n} v_{i}^{n *}\left\langle\hat{\gamma}_{n \downarrow} \hat{\gamma}_{n \downarrow}^{\dagger}\right\rangle\right] \\
& =\sum_{n}\left[-v_{j}^{n *} u_{i}^{n} f\left(E_{n \uparrow}\right)+u_{j}^{n} v_{i}^{n *} f\left(-E_{n \downarrow}\right)\right]
\end{aligned}
$$

Using global indices，we obtain

$$
\begin{aligned}
\Delta_{i j} & =\frac{V}{2} \sum_{n}\left[u_{i}^{n} v_{j}^{n *} f\left(-E_{n \uparrow}\right)-v_{i}^{n *} u_{j}^{n} f\left(E_{n \downarrow}\right)-v_{j}^{n *} u_{i}^{n} f\left(E_{n \uparrow}\right)+u_{j}^{n} v_{i}^{n *} f\left(-E_{n \downarrow}\right)\right] \\
& =\frac{V}{2} \sum_{n=1}^{2 N}\left[\mathbf{u}_{i}^{n} \mathbf{v}_{j}^{n *} f\left(-E_{n}\right)-\mathbf{u}_{i}^{n} \mathbf{v}_{j}^{n *} f\left(E_{n}\right)\right] \\
& =\frac{V}{2} \sum_{n=1}^{2 N} \mathbf{u}_{i}^{n} \mathbf{v}_{j}^{n *}\left[1-2 f\left(E_{n}\right)\right]
\end{aligned}
$$

Since $1-2 f\left(E_{n}\right)=1-\frac{2}{e^{\beta E_{n}}+1}=\frac{e^{\beta E_{n}}-1}{e^{\beta E_{n}}+1}=\tanh \frac{\beta E_{n}}{2}$
$\Delta_{i j}=\frac{V}{2} \sum_{n=1}^{2 N} \mathbf{u}_{i}^{n} \mathbf{v}_{j}^{n *} \tanh \frac{\beta E_{n}}{2}$

EXAMPLES：

1．Solve the BdG equations for the d－wave superconductivity，

$$
\left(\begin{array}{cc}
-\mathrm{t} & \Delta \\
\Delta^{*} & \mathrm{t}^{*}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{u} & -\mathrm{v}^{*} \\
\mathrm{v} & \mathrm{u}^{*}
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{u} & -\mathrm{v}^{*} \\
\mathrm{v} & \mathrm{u}^{*}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{E}_{\uparrow} & 0 \\
0 & -\mathrm{E}_{\downarrow}
\end{array}\right)
$$

We can then obtain the pairing using

$$
\Delta_{i j}=\frac{V}{2} \sum_{n=1}^{2 N} \mathbf{u}_{i}^{n} \mathbf{v}_{j}^{n *} \tanh \frac{\beta E_{n}}{2}
$$

The d－wave superconductivity is

$$
\Delta_{i}=\frac{1}{4}\left(\Delta_{i+x}+\Delta_{i-x}-\Delta_{i+y}-\Delta_{i-y}\right)
$$

（3）D－density wave（DDW）order：
$W_{i j \uparrow}=\frac{V}{2}\left\langle c_{i \uparrow}^{\dagger} c_{j \uparrow}-c_{j \uparrow}^{\dagger} c_{i \uparrow}\right\rangle=\frac{V}{2}\left(\left\langle c_{i \uparrow}^{\dagger} c_{j \uparrow}\right\rangle-\left\langle c_{i \uparrow}^{\dagger} c_{j \uparrow}\right\rangle^{*}\right)=V \cdot \Im\left\langle c_{i \uparrow}^{\dagger} c_{j \uparrow}\right\rangle$
$W_{i j \downarrow}=\frac{V}{2}\left\langle c_{i \downarrow}^{\dagger} c_{j \downarrow}-c_{j \downarrow}^{\dagger} c_{i \downarrow}\right\rangle=\frac{V}{2}\left(\left\langle c_{i \downarrow}^{\dagger} c_{j \downarrow}\right\rangle-\left\langle c_{i \downarrow}^{\dagger} c_{j \downarrow}\right\rangle^{*}\right)=V \cdot \mathfrak{J}\left\langle c_{i \downarrow}^{\dagger} c_{j \downarrow}\right\rangle$
$W_{i j}=W_{i j \uparrow}+W_{i j \downarrow}=V \cdot \Im\left(\left\langle c_{i \uparrow}^{\dagger} c_{j \uparrow}\right\rangle+\left\langle c_{i \downarrow}^{\dagger} c_{j \downarrow}\right\rangle\right)$

$$
\begin{aligned}
\left\langle c_{i \uparrow}^{\dagger} c_{j \uparrow}\right\rangle & =\sum_{n}\left\langle\left(u_{i}^{n *} \gamma_{n \uparrow}^{\dagger}-v_{i}^{n} \gamma_{n \downarrow}\right)\left(u_{j}^{n} \gamma_{n \uparrow}-v_{j}^{n *} \gamma_{n \downarrow}^{\dagger}\right)\right\rangle \\
& =\sum_{n}\left\langle\left(u_{i}^{n *} \gamma_{n \uparrow}^{\dagger}-v_{i}^{n} \gamma_{n \downarrow}\right)\left(u_{j}^{n} \gamma_{n \uparrow}-v_{j}^{n *} \gamma_{n \downarrow}^{\dagger}\right)\right\rangle \\
& =\sum_{n}\left[u_{i}^{n *} u_{j}^{n}\left\langle\gamma_{n \uparrow}^{\dagger} \gamma_{n \uparrow}\right\rangle+v_{i}^{n} v_{j}^{n *}\left(\gamma_{n \downarrow} \gamma_{n \downarrow}^{\dagger}\right)\right] \\
& =\sum_{n}\left[u_{i}^{n *} u_{j}^{n} f\left(E_{n \uparrow}\right)+v_{i}^{n} v_{j}^{n *} f\left(-E_{n \downarrow}\right)\right] \\
\left\langle c_{i \downarrow}^{\dagger} c_{j \downarrow}\right\rangle & =\sum_{n}\left\langle\left(u_{i}^{n *} \gamma_{n \downarrow}^{\dagger}+v_{i}^{n} \gamma_{n \uparrow}\right)\left(u_{j}^{n} \gamma_{n \downarrow}+v_{j}^{n *} \gamma_{n \uparrow}^{\dagger}\right)\right\rangle \\
& =\sum_{n}\left[u_{i}^{n *} u_{j}^{n}\left\langle\gamma_{n \downarrow}^{\dagger} \gamma_{n \downarrow}\right\rangle+v_{i}^{n} v_{j}^{n *}\left\langle\gamma_{n \uparrow} \gamma_{n \uparrow}^{\dagger}\right)\right] \\
& =\sum_{n}\left[u_{i}^{n *} u_{j}^{n} f\left(E_{n \downarrow}\right)+v_{i}^{n} v_{j}^{n *} f\left(-E_{n \uparrow}\right)\right]
\end{aligned}
$$

Using global indices，we obtain

$$
\left.\begin{array}{rl}
W_{i j}=V \cdot \mathfrak{J} \sum_{n}[& u_{i}^{n *} u_{j}^{n} f\left(E_{n \uparrow}\right)+v_{i}^{n} v_{j}^{n *} f\left(-E_{n \downarrow}\right) \\
& \left.+u_{i}^{n *} u_{j}^{n} f\left(E_{n \downarrow}\right)+v_{i}^{n} v_{j}^{n *} f\left(-E_{n \uparrow}\right)\right] \\
=V \cdot \Im
\end{array}\right)
$$

4－2 Magnetic Field Effect

A．PEIERLS SUBSTITUTION IN TIGHT－BINDING MODEL

（1）When apply an external magnetic field，the single－particle Hamiltonian and the Bloch eigenfunctions are
$\widehat{\mathcal{H}}_{B}=\frac{1}{2 m}\left(\hat{\mathcal{P}}+\frac{e}{c} \vec{A}\right)^{2}+V(\vec{r})$
$\tilde{\psi}_{k}(\vec{r})=\frac{1}{\sqrt{N}} \sum_{R} e^{i \vec{k} \cdot \vec{R}} \widetilde{w}(\vec{r}-\vec{R})$
Since in the presence of a magnetic field，the only term changed in the Hamiltonian is the momentum operator as

$$
\vec{p} \rightarrow \vec{p}+\frac{e}{c} \vec{A}
$$

Thus，we can assume the Wannier function as

$$
\widetilde{w}\left(\vec{r}-\vec{R}_{i}\right)=e^{i \phi} w(\vec{r}-\vec{R})
$$

The Schrödinger equation gives

$$
\begin{aligned}
\widehat{\mathcal{H}}_{B} \tilde{\psi}_{k}(\vec{r}) & =\frac{1}{\sqrt{N}} \sum_{R} e^{i \vec{k} \cdot \vec{R}} \widehat{\mathcal{H}} \widetilde{w}(\vec{r}-\vec{R}) \\
& =\frac{1}{\sqrt{N}} \sum_{R} e^{i \vec{k} \cdot \vec{R}}\left[\frac{1}{2 m}\left(\hat{\mathcal{P}}+\frac{e}{c} \vec{A}\right)^{2}+V(\vec{r})\right] \widetilde{w}(\vec{r}-\vec{R})
\end{aligned}
$$

Since

$$
\begin{aligned}
& \hat{\mathcal{p}} e^{i \phi} w(\vec{r}-\vec{R})=-i \hbar \nabla e^{i \phi} w(\vec{r}-\vec{R}) \\
&=-i \hbar\left[e^{i \phi} \nabla w(\vec{r}-\vec{R})+i e^{i \phi} \nabla \phi w(\vec{r}-\vec{R})\right] \\
&=e^{i \phi}(\hat{\mathcal{P}}+\hbar \nabla \phi) w(\vec{r}-\vec{R}) \\
& \begin{aligned}
\left(\hat{\mathcal{P}}+\frac{e}{c} \vec{A}\right)^{2} \widetilde{w}(\vec{r}-\vec{R}) & =\left(\hat{\mathcal{p}}+\frac{e}{c} \vec{A}\right) \cdot\left(\hat{\mathcal{D}}+\frac{e}{c} \vec{A}\right) e^{i \phi} w(\vec{r}-\vec{R}) \\
& =\left(\hat{\mathcal{D}}+\frac{e}{c} \vec{A}\right) \cdot e^{i \phi}\left(\hat{\mathcal{P}}+\frac{e}{c} \vec{A}+\hbar \nabla \phi\right) w(\vec{r}-\vec{R}) \\
& =e^{i \phi}\left(\hat{\mathcal{D}}+\frac{e}{c} \vec{A}+\hbar \nabla \phi\right)^{2} w(\vec{r}-\vec{R})
\end{aligned}
\end{aligned}
$$

Thus，we obtain
$\widehat{\mathcal{H}}_{B} \tilde{\psi}_{k}(\vec{r})=\frac{1}{\sqrt{N}} \sum_{R} e^{i \vec{k} \cdot \vec{R}} e^{i \phi}\left[\frac{1}{2 m}\left(\hat{\mathcal{R}}+\frac{e}{c} \vec{A}+\hbar \nabla \phi\right)^{2}+V(\vec{r})\right] w(\vec{r}-\vec{R})$
Since

$$
\widehat{\mathcal{H}} \psi_{k}(\vec{r})=\left[\frac{\hat{\mathcal{p}}^{2}}{2 m}+V(\vec{r})\right] \psi_{k}(\vec{r})=\varepsilon_{k} \psi_{k}(\vec{r})
$$

We need to set

$$
\frac{e}{c} \vec{A}+\hbar \nabla \phi=0 \Rightarrow \phi=-\frac{e}{\hbar c} \int_{R}^{r} \vec{A}\left(\vec{r}^{\prime}\right) \cdot d \vec{r}^{\prime} \cdots \cdots \text { (a) }
$$

Thus，we obtain
$\widehat{\mathcal{H}}_{B} \tilde{\psi}_{k}(\vec{r})=e^{i \phi} \widehat{\mathcal{H}} \psi_{k}(\vec{r})=e^{i \phi} \varepsilon_{k} \psi_{k}(\vec{r})=\varepsilon_{k} \tilde{\psi}_{k}(\vec{r})$
\Rightarrow The magnetic field has no effect on the eigenenergy at the scale of the crystal lattice and only adds a phase term in the Bloch wavefunction．
（2）Thus，the hopping integral is

$$
\begin{aligned}
\tilde{t}_{i j} & =-\int \widetilde{w}^{*}\left(\vec{r}-\vec{R}_{i}\right) \widehat{\mathcal{H}}_{B} \widetilde{w}\left(\vec{r}-\vec{R}_{j}\right) d^{3} r \\
& =-\int e^{-i \phi_{i}} w^{*}\left(\vec{r}-\vec{R}_{i}\right) e^{i \phi_{j} \widehat{\mathcal{H}} w}\left(\vec{r}-\vec{R}_{j}\right) d^{3} r \\
& =-\int e^{-i\left(\phi_{i}-\phi_{j}\right)} w^{*}\left(\vec{r}-\vec{R}_{i}\right) \widehat{\mathcal{H}} w\left(\vec{r}-\vec{R}_{j}\right) d^{3} r \\
& =-e^{-i\left(\phi_{i}-\phi_{j}\right)} t_{i j}
\end{aligned}
$$

Since

$$
\begin{aligned}
\phi_{i}-\phi_{j} & =-\frac{e}{\hbar c}\left(\int_{R_{i}}^{r} \vec{A}\left(\vec{r}^{\prime}\right) \cdot d \vec{r}^{\prime}+\int_{R_{j}}^{r} \vec{A}\left(\vec{r}^{\prime}\right) \cdot d \vec{r}^{\prime}\right) \\
& =-\frac{e}{\hbar c} \int_{R_{i} \rightarrow r \rightarrow R_{j}} \vec{A}\left(\vec{r}^{\prime}\right) \cdot d \vec{r}^{\prime} \\
& =-\frac{e}{\hbar c} \oint_{\vec{R}_{i} \rightarrow \vec{r} \rightarrow \vec{R}_{j} \rightarrow \vec{R}_{i}} \vec{A}\left(\vec{r}^{\prime}\right) \cdot d \vec{r}^{\prime}-\frac{e}{\hbar c} \int_{R_{i}}^{R_{j}} \vec{A}\left(\vec{r}^{\prime}\right) \cdot d \vec{r}^{\prime}
\end{aligned}
$$

Since we assume $\vec{A}(\vec{r})$ is approximately uniform at the lattice scale－ the scale at which the Wannier states are localized to the positions－we can approximate，

$$
-\frac{e}{\hbar c} \oint_{\vec{R}_{i} \rightarrow \vec{r} \rightarrow \vec{R}_{j} \rightarrow \vec{R}_{i}} \vec{A}\left(\vec{r}^{\prime}\right) \cdot d \vec{r}^{\prime} \approx 0
$$

Let

$$
\phi_{i j}=\frac{e}{\hbar c} \int_{R_{i}}^{R_{j}} \vec{A}\left(\vec{r}^{\prime}\right) \cdot d \vec{r}^{\prime}=\frac{2 \pi}{\Phi_{0}} \int_{R_{i}}^{R_{j}} \vec{A}\left(\vec{r}^{\prime}\right) \cdot d \vec{r}^{\prime}
$$

where Φ_{0} is the single－particle flux quantum，

$$
\Phi_{0}=\frac{h c}{e}=2.07 \times 10^{-15} \mathrm{Tm}^{2}
$$

Thus，we obtain

$$
\phi_{i}-\phi_{j} \approx-\phi_{i j}
$$

which is yielding the desired result，
$\tilde{t}_{i j}=t_{i j} e^{i \phi_{i j}}$
\Rightarrow Magnetic fields are incorporated in the tight－binding model by adding a phase to the hopping terms，i．e．，the magnetic field enters the kinetic part of the Hamiltonian through a phase factor．
（3）Thus，the tight－binding Hamiltonian is
$\widehat{\mathcal{H}}_{B}=\sum_{i j \sigma}-\tilde{t}_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+\sum_{i j} \Delta_{i j} c_{i \uparrow}^{\dagger} c_{j \downarrow}^{\dagger}+$ H．c．
Now，we can solve the BdG equations as follows：
$\left(\begin{array}{cc}-\tilde{\mathrm{t}} & \tilde{\Delta} \\ \tilde{\Delta}^{*} & \tilde{\mathrm{t}}^{*}\end{array}\right)\left(\begin{array}{cc}\tilde{\mathrm{u}} & -\tilde{\mathrm{v}}^{*} \\ \tilde{\mathrm{v}} & \tilde{\mathrm{u}}^{*}\end{array}\right)=\left(\begin{array}{cc}\tilde{\mathrm{u}} & -\tilde{\mathrm{v}}^{*} \\ \tilde{\mathrm{v}} & \tilde{\mathrm{u}}^{*}\end{array}\right)\left(\begin{array}{cc}\mathrm{E}_{\uparrow} & 0 \\ 0 & -\mathrm{E}_{\downarrow}\end{array}\right)$
$\sum_{j}\left[-\tilde{t}_{i j} \tilde{u}_{j}^{n}+\tilde{\Delta}_{i j} \tilde{v}_{j}^{n}\right]=E_{n \uparrow} \tilde{u}_{i}^{n}$
$\sum_{j}\left[-t_{i j} e^{-i\left(\phi_{i}-\phi_{j}\right)} \tilde{u}_{j}^{n}+\tilde{\Delta}_{i j} \tilde{v}_{j}^{n}\right]=E_{n \uparrow} \tilde{u}_{i}^{n}$
Multiply $e^{i \phi_{i}}$ on both sides
$\sum_{j}\left[-t_{i j} e^{i \phi_{j}} \tilde{u}_{j}^{n}+\tilde{\Delta}_{i j} \tilde{v}_{j}^{n} e^{i \phi_{i}}\right]=E_{n \uparrow} \tilde{u}_{i}^{n} e^{i \phi_{i}}$
To make the equations covariant，let

$$
\begin{gathered}
\tilde{u}_{j}^{n}=u_{j}^{n} e^{-i \phi_{j}} \\
\tilde{v}_{j}^{n}=v_{j}^{n} e^{-i \phi_{j}} \\
\widetilde{\Delta}_{i j}=\Delta_{i j} e^{-i\left(\phi_{i}-\phi_{j}\right)} \\
\sum_{j}\left[-t_{i j} e^{i \phi_{j}} u_{j}^{n} e^{-i \phi_{j}}+\Delta_{i j} e^{-i\left(\phi_{i}-\phi_{j}\right)} v_{j}^{n} e^{-i \phi_{j}} e^{i \phi_{i}}\right]=E_{n \uparrow} u_{i}^{n} e^{i \phi_{i}} e^{-i \phi_{i}} \\
\sum_{j}\left[-t_{i j} u_{j}^{n}+\Delta_{i j} v_{j}^{n}\right]=E_{n \uparrow} u_{i}^{n}
\end{gathered}
$$

EXAMPLES：

1．Solve the BdG equations for the d－wave superconductivity in the
presence of a magnetic field，

$$
\left(\begin{array}{cc}
-\tilde{\mathrm{t}} & \tilde{\Delta} \\
\tilde{\Delta}^{*} & \tilde{\mathrm{t}}^{*}
\end{array}\right)\left(\begin{array}{cc}
\tilde{\mathrm{u}} & -\tilde{v}^{*} \\
\tilde{\mathrm{v}} & \tilde{\mathrm{u}}^{*}
\end{array}\right)=\left(\begin{array}{cc}
\tilde{\mathrm{u}} & -\tilde{v}^{*} \\
\tilde{\mathrm{v}} & \tilde{\mathrm{u}}^{*}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{E}_{\uparrow} & 0 \\
0 & -\mathrm{E}_{\downarrow}
\end{array}\right)
$$

We then obtain the pairing using

$$
\widetilde{\Delta}_{i j}=\frac{V}{2} \sum_{n=1}^{2 N} \widetilde{\mathbf{u}}_{i}^{n} \widetilde{\mathbf{v}}_{j}^{n *} \tanh \frac{\beta E_{n}}{2}=\Delta_{i j} e^{-i\left(\phi_{i}-\phi_{j}\right)}
$$

Since the d－wave superconductivity is
$\Delta_{i}=\frac{1}{4}\left(\Delta_{i+x}+\Delta_{i-x}-\Delta_{i+y}-\Delta_{i-y}\right)$
We need calculate each pairing as
$\Delta_{i j}=\widetilde{\Delta}_{i j} e^{i\left(\phi_{i}-\phi_{j}\right)}=\tilde{\Delta}_{i j} e^{-i \phi_{i j}}$

B．RECTANGULAR VORTEX LATTICE

（1）Consider a rectangular lattice with the linear dimensions N_{x} and N_{y} as a unit cell of the vortex lattice．

Since in the presence of a magnetic field，the magnetic effect is included through a Peierls phase factor as

$$
\phi_{i j}=\frac{2 \pi}{\Phi_{0}} \int_{R_{i}}^{R_{j}} \vec{A}(\vec{r}) \cdot d \vec{r}
$$

where $\nabla \times \vec{A}=B \hat{z}$ ．Thus，the flux density enclosed within one plaquette of the unit cell is given by
$\sum_{\square} \phi_{i j}=\sum_{\square} \frac{2 \pi}{\Phi_{0}} \int_{R_{i}}^{R_{j}} \vec{A}(\vec{r}) \cdot d \vec{r}=\frac{2 \pi}{\Phi_{0}} \sum_{\square} \int_{R_{i}}^{R_{j}} \vec{A}(\vec{r}) \cdot d \vec{r}$
where a implies a closed loop
$(x, y) \xrightarrow{\oplus}(x+1, y) \xrightarrow{\odot}(x+1, y+1) \xrightarrow{\oplus}(x, y+1) \xrightarrow{\oplus}(x, y)$ and

$$
\sum_{\square} \int_{R_{i}}^{R_{j}} \vec{A}(\vec{r}) \cdot d \vec{r}=\oint_{R_{i}}^{R_{j}} \vec{A}(\vec{r}) \cdot d \vec{r}=\int_{S} \nabla \times \vec{A} \cdot d \vec{S}=\int_{S} \vec{B} \cdot d \vec{S}=B a^{2}
$$

where S is the size of the plaquette and a is the lattice constant．
Thus，we obtain
$\sum_{\square} \phi_{i j}=\frac{2 \pi}{\Phi_{0}} B a^{2}$
Since the single－particle flux enclosed in a unit cell is 2π such as

$$
\sum_{\square} \phi_{i j}=\frac{2 \pi}{\Phi_{0}} B N_{x} N_{y} a^{2}=2 \pi
$$

where \quad implies a closed path around the rectangular lattice such as

$$
(0,0) \xrightarrow{\oplus}\left(N_{x} a, 0\right) \xrightarrow{\oplus}\left(N_{x} a, N_{y} a\right) \xrightarrow{\oplus}\left(0, N_{y} a\right) \xrightarrow{\oplus}(0,0)
$$

we should let

$$
B=\frac{\Phi_{0}}{N_{x} N_{y} a^{2}}
$$

（2）Since the rectangular lattice is a unit cell of the vortex lattice，we can introduce a translation operator $\widehat{T}_{m n}$ such that

$$
\vec{r}^{\prime}=\widehat{T}_{m n} \vec{r}=\vec{r}+\vec{R}
$$

where $\vec{R}=m N_{x} a \hat{x}+n N_{y} a \hat{y}$ ．
The gauge transformation of the vector potential \vec{A} under the
translation operator is $\vec{A}\left(\hat{T}_{m n} \vec{r}\right)=\vec{A}(\vec{r})+\nabla \chi(\vec{r})$
Now，consider a Landau gauge $\vec{A}=(-B y, 0,0)$ such that

$$
\nabla \times \vec{A}=\left(\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-B y & 0 & 0
\end{array}\right)=B \hat{z}
$$

Thus，we have

$$
\begin{aligned}
& \vec{A}\left(\hat{T}_{m 0} \vec{r}\right)=\left(-B \hat{T}_{m 0} y, 0,0\right)=(-B y, 0,0)=\vec{A}(\vec{r})=\vec{A}(\vec{r})+\nabla \chi(\vec{R}) \\
& \Rightarrow \nabla \chi(\vec{R})=0
\end{aligned}
$$

and

$$
\begin{aligned}
\vec{A}\left(\hat{T}_{0 n} \vec{r}\right) & =\left(-B \hat{T}_{0 n} y, 0,0\right) \\
& =\left(-B\left(y+n N_{y} a\right), 0,0\right) \\
& =(-B y, 0,0)+\left(-B n N_{y} a, 0,0\right) \\
& =\vec{A}(\vec{r})+\nabla \chi(\vec{R}) \\
\Rightarrow \nabla \chi(\vec{R}) & =-B n N_{y} a \hat{x} \\
\Rightarrow \chi(\vec{R}) & =-B n N_{y} a x
\end{aligned}
$$

Thus，we obtain

$$
\begin{aligned}
\phi_{i j}(\vec{R}) & =\frac{2 \pi}{\Phi_{0}} \int_{r_{i}}^{r_{j}+R} \vec{A}\left(\vec{r}^{\prime}\right) \cdot d \vec{r}^{\prime} \\
& =\phi_{i j}+\frac{2 \pi}{\Phi_{0}} \int_{0}^{R} \nabla \chi(\vec{R}) \cdot d \vec{r}^{\prime} \\
& =\phi_{i j}+\left.\frac{2 \pi}{\Phi_{0}}\left(-B n N_{y} a x\right)\right|_{0} ^{R_{x}} \\
& =\phi_{i j}-\frac{2 \pi}{\Phi_{0}} B n N_{y} a m N_{x} a \\
& =\phi_{i j}-2 \pi m n
\end{aligned}
$$

From 1－4－C，we have

$$
\begin{aligned}
& u_{i}^{\prime}=e^{i \frac{e}{\hbar c} \chi(R)} u_{i}=e^{i 2 \pi \chi(R) / \Phi_{0}} u_{i} \\
& v_{i}^{\prime}=e^{-i \frac{e}{\hbar c} \chi(R)} v_{i}=e^{-i 2 \pi \chi(R) / \Phi_{0}} v_{i} \\
& \Delta_{i j}^{\prime}=e^{i 2 \frac{e}{\hbar c} \chi(R)} \Delta_{i j}=e^{i 4 \pi \chi(R) / \Phi_{0}} \Delta_{i j}
\end{aligned}
$$

where

$$
\chi(\vec{R})=-B n N_{y} a m N_{x} a=-m n \Phi_{0}
$$

By considering a closed path around the rectangular lattice，

$$
(0,0) \xrightarrow{\oplus}\left(N_{x} a, 0\right) \xrightarrow{\odot}\left(N_{x} a, N_{y} a\right) \xrightarrow{(3}\left(0, N_{y} a\right) \xrightarrow{\oplus}(0,0)
$$

the acquired flux of the superconducting pairing is

$$
\sum_{\square} \phi=-\frac{4 \pi}{\Phi_{0}}\left(-\phi_{0}\right)=4 \pi
$$

\Rightarrow The flux enclosed by a unit cell has two superconducting flux quanta．Each vortex carrys the flux quantum $h c / 2 e$ ．

C．PERIODIC BOUNDARY CONDITIONS

（1）Since a magnetic unit cell contains two vortexes，conventionally，we set the dimension of the lattice as $N_{x}=2 N_{y}$ ．Thus，each vortex is enclosed in a square lattice with size $\frac{N_{x}}{2} N_{y}$ ．
（2）For the nearest neighbor hopping term，the flux density in each plaquette is
$\sum_{\square} \phi_{i j}=\sum_{\square} \frac{2 \pi}{\Phi_{0}} \int_{R_{i}}^{R_{j}} \vec{A}(\vec{r}) \cdot d \vec{r}=\phi_{\odot}+\phi_{\odot}+\phi_{\odot}+\phi_{\odot}$
$\phi_{\odot}=\frac{2 \pi}{\Phi_{0}} \int_{x, y}^{x+1, y} \vec{A}(\vec{r}) \cdot d \vec{r}=-\frac{2 \pi}{\Phi_{0}} B y a^{2}$
$\phi_{\odot}=\frac{2 \pi}{\Phi_{0}} \int_{x+1, y}^{x+1, y+1} \vec{A}(\vec{r}) \cdot d \vec{r}=0$
$\phi_{\circledast}=\frac{2 \pi}{\Phi_{0}} \int_{x+1, y+1}^{x, y+1} \vec{A}(\vec{r}) \cdot d \vec{r}=\frac{2 \pi}{\Phi_{0}} B(y+1) a^{2}$
$\phi_{\oplus}=\frac{2 \pi}{\Phi_{0}} \int_{x, y+1}^{x, y} \vec{A}(\vec{r}) \cdot d \vec{r}=0$
$\sum_{\square} \phi_{i j}=\frac{2 \pi}{\Phi_{0}} B a^{2}=\frac{2 \pi}{\Phi_{0}} \frac{\Phi_{0}}{N_{x} N_{y} a^{2}} a^{2}=\underbrace{\frac{2 \pi}{N_{x} N_{y}}}_{=\varphi_{0}}=\varphi_{0}$
The Peierls phase factors are
$\phi_{i j}=\left\{\begin{array}{cc}-\varphi_{0} y, & \text { along }+x \text { direction } \\ \varphi_{0} y, & \text { along }-x \text { direction } \\ 0, & \text { along }+y \text { direction } \\ 0, & \text { along }-y \text { direction }\end{array}\right.$
at the boundaries
$\phi_{i j}=\left\{\begin{aligned} \varphi_{0} N_{y} x, & \text { along }+y \text { direction，at } y=N_{y} \\ -\varphi_{0} N_{y} x, & \text { along }-y \text { direction，at } y=1\end{aligned}\right.$
（3）For the next nearest neighbor hopping term，the flux density in each triangle－plaquette is
$\sum_{\square} \phi_{i j}=\sum_{\square} \frac{2 \pi}{\Phi_{0}} \int_{R_{i}}^{R_{j}} \vec{A}(\vec{r}) \cdot d \vec{r}=\phi_{\odot}+\phi_{\odot}+\phi_{\odot}$
$\phi_{\odot}=\frac{2 \pi}{\Phi_{0}} \int_{x, y}^{x+1, y} \vec{A}(\vec{r}) \cdot d \vec{r}=-\frac{2 \pi}{\Phi_{0}} B y a^{2}$
$\phi_{\odot}=\frac{2 \pi}{\Phi_{0}} \int_{x+1, y}^{x+1, y+1} \vec{A}(\vec{r}) \cdot d \vec{r}=0$
$\phi_{\circledast}=\frac{2 \pi}{\Phi_{0}} \int_{x+1, y+1}^{x, y} \vec{A}(\vec{r}) \cdot d \vec{r}=\frac{2 \pi}{\Phi_{0}} B \frac{(y+1)^{2}-y^{2}}{2} a^{2}=\frac{2 \pi}{\Phi_{0}} B\left(y+\frac{1}{2}\right) a^{2}$
$\sum_{\square} \phi_{i j}=\frac{2 \pi}{\Phi_{0}} B \frac{a^{2}}{2}=\frac{2 \pi}{\Phi_{0}} \frac{\Phi_{0}}{N_{x} N_{y} a^{2}} \frac{a^{2}}{2}=\frac{1}{2} \frac{2 \pi}{\underbrace{N_{x} N_{y}}_{=\varphi_{0}}}=\frac{\varphi_{0}}{2}$
The Peierls phase factors are
$\phi_{i j}=\left\{\begin{aligned}-\varphi_{0}\left(y+\frac{1}{2}\right), & \text { along }+x+y \text { direction } \\ \varphi_{0}\left(y+\frac{1}{2}\right), & \text { along }-x+y \text { direction } \\ -\varphi_{0}\left(y-\frac{1}{2}\right), & \text { along }+x-y \text { direction } \\ \varphi_{0}\left(y-\frac{1}{2}\right), & \text { along }-x-y \text { direction }\end{aligned}\right.$
at the boundaries

$$
\phi_{i j}=\left\{\begin{array}{cl}
\varphi_{0}\left(N_{y} x-\frac{1}{2}\right), & \text { along }+x+y \text { direction, at } y=N_{y} \\
\varphi_{0}\left(N_{y} x+\frac{1}{2}\right), & \text { along }-x+y \text { direction, at } y=N_{y} \\
-\varphi_{0}\left(N_{y}(x+1)+\frac{1}{2}\right), & \text { along }+x-y \text { direction, at } y=1 \\
-\varphi_{0}\left(N_{y}(x-1)-\frac{1}{2}\right), & \text { along }-x-y \text { direction, at } y=1
\end{array}\right.
$$

OS：
For some computer language，the index conventionally starts from 0 ．Thus，we need to modify the boundary conditions as follows：

$$
\phi_{i j}=\left\{\begin{array}{cl}
\varphi_{0}\left(N_{y} x+\frac{1}{2}\right), & \text { along }+x+y \text { direction, at } y=N_{y}-1 \\
\varphi_{0}\left(N_{y} x-\frac{1}{2}\right), & \text { along }-x+y \text { direction, at } y=N_{y}-1 \\
-\varphi_{0}\left(N_{y}(x+1)-\frac{1}{2}\right), & \text { along }+x-y \text { direction, at } y=0 \\
-\varphi_{0}\left(N_{y}(x-1)+\frac{1}{2}\right), & \text { along }-x-y \text { direction, at } y=0
\end{array}\right.
$$

（4）For the 3rd nearest neighbor hopping term，the flux density in each triangle－plaquette is

$$
\begin{aligned}
& \sum_{\square} \phi_{i j}=\sum_{\square} \frac{2 \pi}{\Phi_{0}} \int_{R_{i}}^{R_{j}} \vec{A}(\vec{r}) \cdot d \vec{r}=\phi_{\odot}+\phi_{\odot}+\phi_{\odot}+\phi_{\oplus} \\
& \phi_{\odot}=\frac{2 \pi}{\Phi_{0}} \int_{x, y}^{x+2, y} \vec{A}(\vec{r}) \cdot d \vec{r}=-\frac{2 \pi}{\Phi_{0}} B 2 y a^{2} \\
& \phi_{(2}=\frac{2 \pi}{\Phi_{0}} \int_{x+2, y}^{x+2, y+2} \vec{A}(\vec{r}) \cdot d \vec{r}=0 \\
& \phi_{\odot}=\frac{2 \pi}{\Phi_{0}} \int_{x+2, y+2}^{x, y+2} \vec{A}(\vec{r}) \cdot d \vec{r}=\frac{2 \pi}{\Phi_{0}} B 2(y+1) a^{2} \\
& \phi_{\oplus}=\frac{2 \pi}{\Phi_{0}} \int_{x, y+2}^{x, y} \vec{A}(\vec{r}) \cdot d \vec{r}=0
\end{aligned}
$$

$$
\sum_{\square} \phi_{i j}=\frac{2 \pi}{\Phi_{0}} B 2 a^{2}=\frac{2 \pi}{\Phi_{0}} \frac{2 \Phi_{0}}{N_{x} N_{y} a^{2}} a^{2}=2 \underbrace{\frac{2 \pi}{N_{x} N_{y}}}_{=\varphi_{0}}=2 \varphi_{0}
$$

The Peierls phase factors are
$\phi_{i j}=\left\{\begin{array}{cc}-\varphi_{0} 2 y, & \text { along }+x \text { direction } \\ \varphi_{0} 2 y, & \text { along }-x \text { direction } \\ 0, & \text { along }+y \text { direction } \\ 0, & \text { along }-y \text { direction }\end{array}\right.$
at the boundaries
$\phi_{i j}=\left\{\begin{aligned} & \varphi_{0} N_{y} x, \\ &-\varphi_{0} N_{y} x \text { along }+y \text { direction，at } y=N_{y} \\ & \varphi_{0}\left(N_{y} x-1\right), \text { along }-y \text { direction，at } y=2 \\ &-\varphi_{0}\left(N_{y} x-1\right), \text { along }+y \text { direction，at } y=N_{y}-1 \\ & \text { adirection，at } y=1\end{aligned}\right.$

4－3 Local Density of States

A．GREEN＇S FUNCTIONS ON LATTICE

（1）Matsubara Green＇s function
$G_{i j \uparrow}(\tau)=-\left\langle\widehat{\mathrm{T}}\left[\hat{c}_{i \uparrow}(\tau) \hat{c}_{j \uparrow}^{\dagger}(0)\right]\right\rangle=-\Theta(\tau)\left\langle\hat{c}_{i \uparrow}(\tau) \hat{c}_{j \uparrow}^{\dagger}(0)\right\rangle+\Theta(-\tau)\left\langle\hat{c}_{j \uparrow}^{\dagger}(0) \hat{c}_{i \uparrow}(\tau)\right\rangle$
$G_{i j \downarrow}^{*}(\tau)=-\left\langle\widehat{\mathrm{T}}\left[\hat{c}_{i \downarrow}^{\dagger}(\tau) \hat{c}_{j \downarrow}(0)\right]\right\rangle$
$=-\Theta(\tau)\left\langle c_{i \downarrow}^{\dagger}(\tau) c_{j \downarrow}(0)\right\rangle+\Theta(-\tau)\left\langle c_{j \downarrow}(0) c_{i \downarrow}^{\dagger}(\tau)\right\rangle$
$F_{i j}(\tau)=-\left\langle\widehat{\mathrm{T}}\left[\hat{c}_{i \uparrow}(\tau) \hat{c}_{j \downarrow}(0)\right]\right\rangle=-\Theta(\tau)\left\langle c_{i \uparrow}(\tau) c_{j \downarrow}(0)\right\rangle+\Theta(-\tau)\left\langle c_{j \downarrow}(0) c_{i \uparrow}(\tau)\right\rangle$
$F_{i j}^{*}(\tau)=-\left\langle\widehat{\mathrm{T}}\left[\hat{c}_{i \downarrow}^{\dagger}(\tau) \hat{c}_{j \uparrow}^{\dagger}(0)\right]\right\rangle=-\Theta(\tau)\left\langle c_{i \downarrow}^{\dagger}(\tau) c_{j \uparrow}^{\dagger}(0)\right\rangle+\Theta(-\tau)\left\langle c_{j \uparrow}^{\dagger}(0) c_{i \downarrow}^{\dagger}(\tau)\right\rangle$
The equations of motion of Green＇s function

$$
\begin{aligned}
\frac{\partial}{\partial \tau} G_{i j \uparrow}(\tau)=- & \frac{\partial}{\partial \tau} \Theta(\tau)\left\langle c_{i \uparrow}(\tau) c_{j \uparrow}^{\dagger}(0)\right\rangle+\frac{\partial}{\partial \tau} \Theta(-\tau)\left\langle c_{j \uparrow}^{\dagger}(0) c_{i \uparrow}(\tau)\right\rangle \\
& -\Theta(\tau)\left\langle\frac{\partial}{\partial \tau} c_{i \uparrow}(\tau) c_{j \uparrow}^{\dagger}(0)\right\rangle+\Theta(-\tau)\left\langle c_{j \uparrow}^{\dagger}(0) \frac{\partial}{\partial \tau} c_{i \uparrow}(\tau)\right\rangle
\end{aligned}
$$

Since $\frac{\partial}{\partial \tau} \Theta(\tau)=\delta(\tau)$ and $\frac{\partial}{\partial \tau} \Theta(-\tau)=-\delta(-\tau)$

$$
\frac{\partial}{\partial \tau} G_{i j \uparrow}(\tau)=-\delta(\tau)\left\langle\left\{c_{i \uparrow}(\tau), c_{j \uparrow}^{\dagger}(0)\right\}\right\rangle-\left\langle\widehat{\mathrm{T}}\left[\frac{\partial}{\partial \tau} c_{i \uparrow}(\tau) c_{j \uparrow}^{\dagger}(0)\right]\right\rangle
$$

Use

$$
\begin{aligned}
& -\frac{\partial}{\partial \tau} \hat{c}_{i \sigma}^{\dagger}(\tau)=\left[c_{i \sigma}^{\dagger}(\tau), \widehat{H}\right]=\sum_{j} t_{i j}^{*} \hat{c}_{j \sigma}^{\dagger}-\sigma \Delta_{i j}^{*} c_{v \bar{\sigma}} \\
& -\frac{\partial}{\partial \tau} c_{i \sigma}(\tau)=\left[c_{i \sigma}(\tau), \widehat{H}\right]=\sum_{l}-t_{i l} \hat{c}_{l \sigma}(\tau)+\sigma \Delta_{i l} \hat{c}_{l \bar{\sigma}}^{\dagger}(\tau)
\end{aligned}
$$

We obtain

$$
\begin{aligned}
\frac{\partial}{\partial \tau} G_{i j \uparrow}(\tau) & =-\delta(\tau) \delta_{i j}+\sum_{l}\left\langle\widehat{\mathrm{~T}}\left[-t_{i l} c_{l \uparrow}(\tau) c_{j \uparrow}^{\dagger}(0)+\Delta_{i l} c_{l \downarrow}^{\dagger}(\tau) c_{j \uparrow}^{\dagger}(0)\right]\right\rangle \\
& =-\delta(\tau) \delta_{i j}+\sum_{l}\left(t_{i l} G_{l j \uparrow}(\tau)-\Delta_{i l} F_{l j}^{*}(\tau)\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial}{\partial \tau} G_{i j \downarrow}^{*}(\tau) & =-\delta(\tau)\left\langle\left\{c_{i \downarrow}^{\dagger}(\tau), c_{j \downarrow}(0)\right\}\right\rangle-\left\langle\widehat{\mathrm{T}}\left[\frac{\partial}{\partial \tau} c_{i \downarrow}^{\dagger}(\tau) c_{j \downarrow}(0)\right]\right\rangle \\
& =\delta(\tau) \delta_{i j}+\sum_{l}\left(-t_{i l}^{*} G_{l j \downarrow}^{*}(\tau)-\Delta_{i l}^{*} F_{l j}(\tau)\right) \\
\frac{\partial}{\partial \tau} F_{i j}(\tau) & =-\delta(\tau)\left\langle\left\{c_{i \uparrow}(\tau), c_{j \downarrow}(0)\right\}\right\rangle-\left\langle\widehat{\mathrm{T}}\left[\frac{\partial}{\partial \tau} c_{i \uparrow}(\tau) c_{j \downarrow}(0)\right]\right\rangle \\
& =\sum_{l}\left(t_{i l} F_{l j}(\tau)-\Delta_{i l} G_{l j \downarrow}^{*}(\tau)\right) \\
\frac{\partial}{\partial \tau} F_{i j}^{*}(\tau) & =-\delta(\tau)\left\langle\left\{c_{i \downarrow}^{\dagger}(\tau), c_{j \uparrow}^{\dagger}(0)\right\}\right\rangle-\left\langle\widehat{\mathrm{T}}\left[\frac{\partial}{\partial \tau} c_{i \downarrow}^{\dagger}(\tau) c_{j \uparrow}^{\dagger}(0)\right]\right\rangle \\
& =\sum_{l}\left(-\Delta_{i l}^{*} G_{l j \uparrow}(\tau)-t_{i l}^{*} F_{l j}^{*}(\tau)\right)
\end{aligned}
$$

These equations are rearranged

$$
\begin{aligned}
& -\frac{\partial}{\partial \tau} G_{i j \uparrow}(\tau)-\sum_{l}\left(-t_{i l} G_{l j \uparrow}(\tau)+\Delta_{i l} F_{l j}^{*}(\tau)\right)=\delta(\tau) \delta_{i j} \\
& -\frac{\partial}{\partial \tau} F_{i j}(\tau)-\sum_{l}\left(-t_{i l} F_{l j}(\tau)+\Delta_{i l} G_{l j \downarrow}^{*}(\tau)\right)=0 \\
& -\frac{\partial}{\partial \tau} F_{i j}^{*}(\tau)-\sum_{l}\left(\Delta_{i l}^{*} G_{l j \uparrow}(\tau)+t_{i l}^{*} F_{l j}^{*}(\tau)\right)=0 \\
& -\frac{\partial}{\partial \tau} G_{i j \downarrow}^{*}(\tau)-\sum_{l}\left(t_{i l}^{*} G_{l j \downarrow}^{*}(\tau)+\Delta_{i l}^{*} F_{l j}(\tau)\right)=\delta(\tau) \delta_{i j}
\end{aligned}
$$

We now write these equations in a matrix form
$-\frac{\partial}{\partial \tau}\left(\begin{array}{cccccc}G_{11 \uparrow} & \cdots & G_{1 N \uparrow} & F_{11} & \cdots & F_{1 N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ G_{N 1 \uparrow} & \cdots & G_{N N \uparrow} & F_{N 1} & \cdots & F_{N N} \\ F_{11}^{*} & \cdots & F_{1 N}^{*} & G_{11 \downarrow}^{*} & \cdots & G_{1 N \downarrow}^{*} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ F_{N 1}^{*} & \cdots & F_{N N}^{*} & G_{N 1 \downarrow}^{*} & \cdots & G_{N N \downarrow}^{*}\end{array}\right)$
$-\left(\begin{array}{cccccc}-t_{11} & \cdots & -t_{1 N} & \Delta_{11} & \cdots & \Delta_{1 N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ -t_{N 1} & \cdots & -t_{N N} & \Delta_{N 1} & \cdots & \Delta_{N N} \\ \Delta_{11}^{*} & \cdots & \Delta_{11}^{*} & t_{11}^{*} & \cdots & t_{1 N}^{*} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \Delta_{11}^{*} & \cdots & \Delta_{11}^{*} & t_{N 1}^{*} & \cdots & t_{N N}^{*}\end{array}\right)\left(\begin{array}{cccccc}G_{11 \uparrow} & \cdots & G_{1 N \uparrow} & F_{11} & \cdots & F_{1 N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ G_{N 1 \uparrow} & \cdots & G_{N N \uparrow} & F_{N 1} & \cdots & F_{N N} \\ F_{11}^{*} & \cdots & F_{1 N}^{*} & G_{11 \downarrow}^{*} & \cdots & G_{1 N \downarrow}^{*} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ F_{N 1}^{*} & \cdots & F_{N N}^{*} & G_{N 1 \downarrow}^{*} & \cdots & G_{N N \downarrow}^{*}\end{array}\right)$
$=\delta(\tau)\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
Let

$$
\mathrm{G}_{\sigma}=\left(\begin{array}{ccc}
G_{11 \sigma} & \cdots & G_{1 N \sigma} \\
\vdots & \ddots & \vdots \\
G_{N 1 \sigma} & \cdots & G_{N N \sigma}
\end{array}\right), \quad \mathrm{F}=\left(\begin{array}{ccc}
F_{11} & \cdots & F_{1 N} \\
\vdots & \ddots & \vdots \\
F_{N 1} & \cdots & F_{N N}
\end{array}\right)
$$

The equations can be rewritten as
$-\frac{\partial}{\partial \tau}\left(\begin{array}{cc}\mathrm{G}_{\uparrow} & \mathrm{F} \\ \mathrm{F}^{*} & \mathrm{G}_{\downarrow}^{*}\end{array}\right)(\tau)-\left(\begin{array}{cc}-\mathrm{t} & \Delta \\ \Delta^{*} & \mathrm{t}^{*}\end{array}\right)\left(\begin{array}{cc}\mathrm{G}_{\uparrow} & \mathrm{F} \\ \mathrm{F}^{*} & \mathrm{G}_{\downarrow}^{*}\end{array}\right)(\tau)=\delta(\tau)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\Rightarrow\left[-\frac{\partial}{\partial \tau}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{cc}-\mathrm{t} & \Delta \\ \Delta^{*} & \mathrm{t}^{*}\end{array}\right)\right]\left(\begin{array}{cc}\mathrm{G}_{\uparrow} & \mathrm{F} \\ \mathrm{F}^{*} & \mathrm{G}_{\downarrow}^{*}\end{array}\right)(\tau)=\delta(\tau)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
This equation is known as Gor＇kov equations．
（2）Fourier transform of the Green＇s functions

$$
\begin{aligned}
& \left(\begin{array}{cc}
\mathrm{G}_{\uparrow} & \mathrm{F} \\
\mathrm{~F}^{*} & \mathrm{G}_{\downarrow}^{*}
\end{array}\right)(\tau)=\frac{1}{\beta} \sum_{\omega} e^{-i \omega \tau}\left(\begin{array}{cc}
\mathrm{G}_{\uparrow} & \mathrm{F} \\
\mathrm{~F}^{*} & \mathrm{G}_{\downarrow}^{*}
\end{array}\right)(i \omega) \\
& \delta(\tau)=\frac{1}{\beta} \sum_{\omega} e^{-i \omega \tau}
\end{aligned}
$$

Substituting into Gor＇kov equations，we obtain
$\frac{1}{\beta} \sum_{\omega} e^{-i \omega \tau}\left[i \omega\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{cc}-\mathrm{t} & \Delta \\ \Delta^{*} & \mathrm{t}^{*}\end{array}\right)\right]\left(\begin{array}{cc}\mathrm{G}_{\uparrow} & \mathrm{F} \\ \mathrm{F}^{*} & \mathrm{G}_{\downarrow}^{*}\end{array}\right)(i \omega)=\frac{1}{\beta} \sum_{\omega} e^{-i \omega \tau}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\Rightarrow\left[\left(\begin{array}{cc}i \omega & 0 \\ 0 & i \omega\end{array}\right)-\left(\begin{array}{cc}-\mathrm{t} & \Delta \\ \Delta^{*} & \mathrm{t}^{*}\end{array}\right)\right]\left(\begin{array}{cc}\mathrm{G}_{\uparrow} & \mathrm{F} \\ \mathrm{F}^{*} & \mathrm{G}_{\downarrow}^{*}\end{array}\right)(i \omega)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
Insert Bogoliubov unitary transformation matrix
$\left[\left(\begin{array}{cc}i \omega & 0 \\ 0 & i \omega\end{array}\right)-\left(\begin{array}{cc}-\mathrm{t} & \Delta \\ \Delta^{*} & \mathrm{t}^{*}\end{array}\right)\right]\left(\begin{array}{cc}\mathrm{u} & -\mathrm{v}^{*} \\ \mathrm{v} & \mathrm{u}^{*}\end{array}\right)\left(\begin{array}{cc}\mathrm{u} & -\mathrm{v}^{*} \\ \mathrm{v} & \mathrm{u}^{*}\end{array}\right)^{\dagger}\left(\begin{array}{cc}\mathrm{G}_{\uparrow} & \mathrm{F} \\ \mathrm{F}^{*} & \mathrm{G}_{\downarrow}^{*}\end{array}\right)(i \omega)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
The solutions of BdG equations give us
$\left(\begin{array}{cc}u & -v^{*} \\ v & u^{*}\end{array}\right)\left[\left(\begin{array}{cc}i \omega & 0 \\ 0 & i \omega\end{array}\right)-\left(\begin{array}{cc}E_{\uparrow} & 0 \\ 0 & -E_{\downarrow}\end{array}\right)\right]\left(\begin{array}{cc}u & -v^{*} \\ v & u^{*}\end{array}\right)^{\dagger}\left(\begin{array}{cc}\mathrm{G}_{\uparrow} & F \\ \mathrm{~F}^{*} & G_{\downarrow}^{*}\end{array}\right)(i \omega)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\Rightarrow\left(\begin{array}{cc}\mathrm{u} & -\mathrm{v}^{*} \\ \mathrm{v} & \mathrm{u}^{*}\end{array}\right)\left(\begin{array}{cc}i \omega-\mathrm{E}_{\uparrow} & 0 \\ 0 & i \omega+\mathrm{E}_{\downarrow}\end{array}\right)\left(\begin{array}{cc}\mathrm{u} & -\mathrm{v}^{*} \\ \mathrm{v} & \mathrm{u}^{*}\end{array}\right)^{\dagger}\left(\begin{array}{cc}\mathrm{G}_{\uparrow} & \mathrm{F} \\ \mathrm{F}^{*} & \mathrm{G}_{\downarrow}^{*}\end{array}\right)(i \omega)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\Rightarrow\left(\begin{array}{cc}\mathrm{G}_{\uparrow} & \mathrm{F} \\ \mathrm{F}^{*} & \mathrm{G}_{\downarrow}^{*}\end{array}\right)(i \omega)=\left[\left(\begin{array}{cc}\mathrm{u} & -\mathrm{v}^{*} \\ \mathrm{v} & \mathrm{u}^{*}\end{array}\right)\left(\begin{array}{cc}i \omega-\mathrm{E}_{\uparrow} & 0 \\ 0 & i \omega+\mathrm{E}_{\downarrow}\end{array}\right)\left(\begin{array}{cc}\mathrm{u} & -\mathrm{v}^{*} \\ \mathrm{v} & \mathrm{u}^{*}\end{array}\right)^{\dagger}\right]^{-1}$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
\mathrm{u} & -\mathrm{v}^{*} \\
\mathrm{v} & \mathrm{u}^{*}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{i \omega-\mathrm{E}_{\uparrow}} & 0 \\
0 & \frac{1}{i \omega+\mathrm{E}_{\downarrow}}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{u}^{*} & \mathrm{v}^{*} \\
-\mathrm{v} & \mathrm{u}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{\mathrm{uu}^{*}}{i \omega-\mathrm{E}_{\uparrow}}+\frac{\mathrm{v}^{*} \mathrm{v}}{i \omega+\mathrm{E}_{\downarrow}} & \frac{\mathrm{uv}^{*}}{i \omega-\mathrm{E}_{\uparrow}}-\frac{\mathrm{v}^{*} \mathrm{u}}{i \omega+\mathrm{E}_{\downarrow}} \\
\frac{\mathrm{vu}^{*}}{i \omega-\mathrm{E}_{\uparrow}}-\frac{\mathrm{u}^{*} \mathrm{v}}{i \omega+\mathrm{E}_{\downarrow}} & \frac{\mathrm{v}^{*} \mathrm{v}}{i \omega-\mathrm{E}_{\uparrow}}+\frac{\mathrm{uu}^{*}}{i \omega+\mathrm{E}_{\downarrow}}
\end{array}\right)
\end{aligned}
$$

Use global indices $\mathbf{u}_{i}^{n}, \mathbf{v}_{i}^{n}$ ，and E_{n} ，i．e，

$$
\begin{aligned}
& \mathbf{u}_{i}=\left(\stackrel{u_{i}^{1}}{\widetilde{\mathbf{u}}_{i}^{1}} \cdots \cdots . \stackrel{u_{i}^{N}}{u_{i}^{N}} \stackrel{-v_{i}^{1+}}{\mathbf{u}_{i}^{N+1}} \cdots \cdots \stackrel{-v_{i}^{N^{*}}}{\mathbf{u}_{i}^{N}}\right) \\
& \mathbf{v}_{i}=(\stackrel{\overbrace{i}^{1}}{\mathbf{v}_{i}^{1}} \ldots \ldots . \stackrel{v_{i}^{N}}{\mathbf{v}_{i}^{N}} \frac{u_{i}^{N}}{\mathbf{v}_{i}^{N+1}} \ldots \ldots . . \\
& \left(\begin{array}{c}
E_{1} \\
\vdots \\
E_{N} \\
E_{N+1} \\
\vdots \\
E_{2 N}
\end{array}\right)=\left(\begin{array}{c}
E_{1 \uparrow} \\
\vdots \\
E_{N \uparrow} \\
-E_{1 \downarrow} \\
\vdots \\
-E_{N \downarrow}
\end{array}\right)
\end{aligned}
$$

Thus，we obtain

$$
\left(\begin{array}{cc}
G_{i j \uparrow} & F_{i j} \\
F_{i j}^{*} & G_{i j \downarrow}^{*}
\end{array}\right)(i \omega)=\sum_{n}\left(\begin{array}{cc}
\frac{\mathbf{u}_{i}^{n} \mathbf{u}_{j}^{n *}}{i \omega-E_{n}} & \frac{\mathbf{u}_{i}^{n} \mathbf{v}_{j}^{n *}}{i \omega-E_{n}} \\
\frac{\mathbf{v}_{i}^{n} \mathbf{u}_{j}^{n *}}{i \omega-E_{n}} & \frac{\mathbf{v}_{i}^{n} \mathbf{v}_{j}^{n *}}{i \omega-E_{n}}
\end{array}\right)
$$

B．LOCAL DENSITY OF STATES

（1）The local density of states at zero temperature

$$
\begin{aligned}
& \rho_{i}(\omega)=-\frac{1}{\pi} \mathfrak{J}\left(G_{i i \uparrow}+G_{i i \downarrow}\right) \\
& -\frac{1}{\pi} \mathfrak{J}\left(G_{i i \uparrow}\right)=-\frac{1}{\pi} \sum_{n} \mathfrak{J}\left(\frac{\mathbf{u}_{i}^{n} \mathbf{u}_{i}^{n *}}{i \omega-E_{n}}\right)=-\sum_{n}\left|\mathbf{u}_{i}^{n}\right|^{2} \delta\left(E_{n}-\omega\right) \\
& -\frac{1}{\pi} \mathfrak{J}\left(G_{i i \downarrow}\right)=-\frac{1}{\pi} \sum_{n} \mathfrak{J}\left(\frac{\mathbf{v}_{i}^{n *} \mathbf{v}_{i}^{n}}{i \omega+E_{n}}\right)=-\sum_{n}\left|\mathbf{v}_{i}^{n}\right|^{2} \delta\left(E_{n}+\omega\right)
\end{aligned}
$$

$\rho_{i}(\omega)=-\sum_{n}\left|\mathbf{u}_{i}^{n}\right|^{2} \delta\left(E_{n}-\omega\right)+\left|\mathbf{v}_{i}^{n}\right|^{2} \delta\left(E_{n}+\omega\right)$
OS：

$$
\frac{1}{\pi} \Im\left(\frac{1}{i \omega-E_{n}}\right)=\delta\left(E_{n}-\omega\right)
$$

（2）The local density of states at finite temperature T
Using the property of δ－function
$\delta\left(E_{n}-\omega\right)=-f^{\prime}\left(E_{n}-\omega\right)=-\frac{d f(\omega)}{d \omega}$
$\rho_{i}(\omega)=\sum_{n}\left|\mathbf{u}_{i}^{n}\right|^{2} f^{\prime}\left(E_{n}-\omega\right)+\left|\mathbf{v}_{i}^{n}\right|^{2} f^{\prime}\left(E_{n}+\omega\right)$
Since

$$
\begin{aligned}
f\left(E_{n} \pm \omega\right) & =\frac{1}{1+e^{\beta\left(E_{n} \pm \omega\right)}} \\
& =\frac{1}{1+\frac{1+\tanh \left(\frac{\beta\left(E_{n} \pm \omega\right)}{2}\right)}{1-\tanh \left(\frac{\beta\left(E_{n} \pm \omega\right)}{2}\right)}} \\
& =\frac{1}{2}\left(1-\tanh \left(\frac{\beta\left(E_{n} \pm \omega\right)}{2}\right)\right)
\end{aligned}
$$

The derivative of the Fermi function is

$$
-\frac{\partial}{\partial \omega} f\left(E_{n} \pm \omega\right)=\frac{\beta}{4}\left[1-\tanh ^{2}\left(\frac{\beta\left(E_{n} \pm \omega\right)}{2}\right)\right]
$$

The local density of states at the temperature T is

$$
\begin{aligned}
\rho_{i}(\omega)=\frac{\beta}{4} \sum_{n} & \left\{\left|\mathbf{u}_{i}^{n}\right|^{2}\left[1-\tanh ^{2}\left(\frac{\beta\left(E_{n}-\omega\right)}{2}\right)\right]\right. \\
& \left.+\left|\mathbf{v}_{i}^{n}\right|^{2}\left[1-\tanh ^{2}\left(\frac{\beta\left(E_{n}+\omega\right)}{2}\right)\right]\right\}
\end{aligned}
$$

C．SUPERCELL

（1）Let $M_{i} L_{i}$ be the length of a crystal and $L_{i}=N_{i} a_{i}$ be the length of a supercell．

Apply the periodic boundary conditions
$\mathrm{u}_{k}(\vec{r}+M \vec{L})=e^{i \vec{k} \cdot M \vec{L}} \mathrm{u}_{k}(\vec{r})=\mathrm{u}_{k}(\vec{r})$
$\Rightarrow e^{i k_{i} M_{i} N_{i} a_{i}}=1$
$\Rightarrow k_{i}=\frac{2 \pi \ell_{i}}{M_{i} N_{i} a_{i}}$ where $\ell_{i}=0, \cdots, M_{i} N_{i}-1$
The Bloch wavefunctions for each supercell are
$\mathrm{u}_{k}(\vec{r})=e^{i \frac{e_{i}}{M_{i} N_{i} a_{i}} \cdot \frac{r_{i}}{i}} \mathbf{u}(\vec{r})$
Define the supercell Bloch states wave vector as \vec{k} ，according to Bloch＇s theorem，BdG wavefunctions are
$\mathrm{u}_{k}=e^{i \vec{k} \cdot \vec{r}} \mathrm{u}$
$\mathrm{v}_{k}=e^{i \vec{k} \cdot \vec{r}_{\mathrm{V}}}$
（2）BdG equations are
$\left(\begin{array}{cc}-\mathrm{t}_{k} & \Delta_{k} \\ \Delta_{k}^{*} & \mathrm{t}_{k}^{*}\end{array}\right)\left(\begin{array}{cc}\mathrm{u}_{k} & -\mathrm{v}_{k}^{*} \\ \mathrm{v}_{k} & \mathrm{u}_{k}^{*}\end{array}\right)=\left(\begin{array}{cc}\mathrm{u}_{k} & -\mathrm{v}_{k}^{*} \\ \mathrm{v}_{k} & \mathrm{u}_{k}^{*}\end{array}\right)\left(\begin{array}{cc}\mathrm{E}_{k \uparrow} & 0 \\ 0 & -\mathrm{E}_{k \downarrow}\end{array}\right)$
$\sum_{j}\left[-t_{i j}(k) u_{j}^{n, k}+\Delta_{i j}(k) v_{j}^{n, k}\right]=E_{n, k \uparrow} u_{i}^{n, k}$
$\sum_{j}\left[-t_{i j}(k) e^{i \vec{k} \cdot \vec{r}_{j}} u_{j}^{n}+\Delta_{i j}(k) e^{i \vec{k} \cdot \vec{r}_{j}} v_{j}^{n}\right]=E_{n, k} e^{i \vec{k} \cdot \vec{r}_{i}} u_{i}^{n}$
$\sum_{j}\left[-t_{i j}(k) e^{-i \vec{k} \cdot\left(\vec{r}_{i}-\vec{r}_{j}\right)} u_{j}^{n}+\Delta_{i j}(k) e^{-i \vec{k} \cdot\left(\vec{r}_{i}-\vec{r}_{j}\right)} v_{j}^{n}\right]=E_{n, k \uparrow} u_{i}^{n}$
Let $t_{i j}(k)=e^{i \vec{k} \cdot\left(\vec{r}_{i}-\vec{r}_{j}\right)} t_{i j}$ and $\Delta_{i j}(k)=e^{i \vec{k} \cdot\left(\vec{r}_{i}-\vec{r}_{j}\right)} \Delta_{i j}$
$\Rightarrow \sum_{j}\left[-t_{i j} u_{j}^{n}+\Delta_{i j} v_{j}^{n}\right]=E_{n \uparrow} u_{i}^{n}$
（3）The local density of states in terms of supercell Bloch states

$$
\begin{aligned}
\rho_{i}(\omega)=\frac{\beta}{4} \frac{1}{M_{x} M_{y}} \sum_{n, k} & \left\{\left|\mathbf{u}_{i}^{n, k}\right|^{2}\left[1-\tanh ^{2}\left(\frac{\beta\left(E_{n, k}-\omega\right)}{2}\right)\right]\right. \\
& \left.+\left|\mathbf{v}_{i}^{n, k}\right|^{2}\left[1-\tanh ^{2}\left(\frac{\beta\left(E_{n, k}+\omega\right)}{2}\right)\right]\right\}
\end{aligned}
$$

4－4 Superfluid Density

OS：
Inspired by Scalapino et．al．［Phy．Rev．Lett．68， 2830 （1992）］for the Hubbard model on a lattice．

A．CURRENT DENSITY OPERATOR

（1）We expand the Hamiltonian to include the interactions of electrons coupled to an electromagnetic field．
$\widehat{H}=-\sum_{i j \sigma}\left(\tilde{t}_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+\right.$ H．c．$)+U \sum_{i} \hat{n}_{i \uparrow} \hat{n}_{i \downarrow}-\frac{V}{2} \sum_{i \neq j} \hat{n}_{i} \hat{n}_{j}=\widehat{H}_{0}+\widehat{H}^{\prime}$
Here，$\widehat{H}^{\prime}(t)$ describes such a minimal coupling
$\widehat{H}^{\prime}(t)=-e a \sum_{i} A_{x}\left(\vec{r}_{i}, t\right) \hat{J}_{x}^{P}\left(\vec{r}_{i}\right)-\frac{e^{2} a^{2}}{2} \sum_{i} A_{x}^{2}\left(\vec{r}_{i}, t\right) \widehat{K}_{x}\left(\vec{r}_{i}\right)$
where a is the lattice constant，A_{x} is the vector potential along the x－ axis，and the particle current operator is defined as
$\hat{J}_{x}^{P}\left(\vec{r}_{i}\right)=-i \sum_{\sigma}\left(t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}-t_{i j}^{*} c_{j \sigma}^{\dagger} c_{i \sigma}\right)$
and the kinetic energy operator is defined as
$\widehat{K}_{x}\left(\vec{r}_{i}\right)=-\sum_{\sigma}\left(t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+t_{i j}^{*} c_{j \sigma}^{\dagger} c_{i \sigma}\right)$
（2）The charge current density operator along the x－axis is found to be $\hat{J}_{x}\left(\vec{r}_{i}\right)=-\frac{\delta \widehat{H}^{\prime}(t)}{\delta A_{x}\left(\vec{r}_{i}, t\right)}=e a \hat{J}_{x}^{P}\left(\vec{r}_{i}\right)+e^{2} a^{2} \widehat{K}_{x}\left(\vec{r}_{i}\right) A_{x}\left(\vec{r}_{i}, t\right)$
OS：
An alternative derivation of the charge current density operator The electric polarization operator
$\hat{P}=e \sum_{i} \vec{r}_{i} \hat{n}_{i}$
The x－component
$\hat{P}_{x}=e \sum_{i} x_{i} \hat{n}_{i}$
The time derivative is

$$
\begin{aligned}
\hat{J}_{x}(\vec{r}) & =\frac{\partial \widehat{P}_{x}}{\partial t}=\frac{i}{\hbar}\left[\widehat{H}, \widehat{P}_{x}\right] \\
& =i e \sum_{\sigma}\left[x_{i} \tilde{t}_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}-x_{i} \tilde{t}_{j i} c_{j \sigma}^{\dagger} c_{i \sigma}\right] \\
& =i e \sum_{\sigma}\left(x_{i}-x_{j}\right) \tilde{t}_{i j} c_{i \sigma}^{\dagger} c_{j \sigma} \\
& =i e \sum_{\sigma}\left(x_{i}-x_{j}\right) t_{i j}\left(1+i \phi_{i j}\right) c_{i \sigma}^{\dagger} c_{j \sigma}
\end{aligned}
$$

With the phase $\phi_{i j}=e A_{i j}=e A_{x}\left(\vec{r}_{i}, t\right)\left(x_{i}-x_{j}\right)$ ，in the limit that the hopping integral only between the nearest neighbors，i．e．，$x_{i}-$ $x_{j}=a$ ．

$$
\begin{aligned}
\hat{J}_{x}(\vec{r}) & =i e \sum_{\sigma} a t_{i j}\left(1+i e A_{x}\left(\vec{r}_{i}, t\right) a\right) c_{i \sigma}^{\dagger} c_{j \sigma} \\
& =e a i \sum_{\sigma} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}-e^{2} a^{2} \sum_{\sigma} t_{i j} A_{x}\left(\vec{r}_{i}, t\right) c_{i \sigma}^{\dagger} c_{j \sigma} \\
& =e a \hat{J}_{x}^{P}(\vec{r})+e^{2} a^{2} \widehat{K}_{x}(\vec{r}) A_{x}(\vec{r}, t)
\end{aligned}
$$

B．KUBO FORMULA

（1）In the linear response theory，the statistical operator in the interaction picture is given by
$\hat{\rho}(t)=\hat{\rho}(-\infty)-\frac{i}{\hbar} \int_{-\infty}^{\mathrm{t}}\left[\widehat{H}^{\prime}\left(t^{\prime}\right), \hat{\rho}(-\infty)\right] d t^{\prime}$
The expectation of a physical variable is found to be

$$
\begin{aligned}
\langle\hat{O}\rangle & =\operatorname{Tr}[\hat{\rho}(-\infty) \hat{O}]-\frac{i}{\hbar} \int_{-\infty}^{t} \operatorname{Tr}\left\{\hat{\rho}(-\infty)\left[\hat{O}\left(t^{\prime}\right), \widehat{H}^{\prime}\left(t^{\prime}\right)\right]\right\} d t^{\prime} \\
& =\langle\widehat{O}\rangle_{0}-\frac{i}{\hbar} \int_{-\infty}^{\mathrm{t}}\left\langle\left[\hat{O}\left(t^{\prime}\right), \widehat{H}^{\prime}\left(t^{\prime}\right)\right]\right\rangle d t^{\prime}
\end{aligned}
$$

where
$\widehat{O}\left(t^{\prime}\right)=e^{i \widehat{H}_{0} t} \widehat{O}^{-i \hat{H}_{0} t}$
$\widehat{H}^{\prime}\left(t^{\prime}\right)=e^{i \widehat{H}_{0} t} \widehat{H}^{\prime} e^{-i \widehat{H}_{0} t}$
（2）The paramagnetic component of the electric current density to first order in A_{x} is
$\left\langle\hat{J}_{x}^{P}(\vec{r})\right\rangle=-i \int_{-\infty}^{t}\left\langle\left[\hat{j}_{x}^{P}(\vec{r}, t), \widehat{H}^{\prime}(t)\right]\right\rangle d t^{\prime}$
where
$\hat{f}_{x}^{P}(\vec{r}, t)=e^{i \hat{H}_{0} t} \hat{j}_{x}^{P}(\vec{r}) e^{-i \hat{H}_{0} t}$
The diamagnetic part in $\left\langle\widehat{K}_{x}\right\rangle_{0}$ only to zeroth order；$\langle\cdots\rangle_{0}$ represents a thermodynamic average with respect to \widehat{H}_{0} ．

C．SUPERFLUID DENSITY

（1）Diamagnetic response to an external magnetic field

$$
\begin{aligned}
\left\langle\widehat{K}_{i j}^{x}\right\rangle= & \left\langle-t_{i j} c_{i \uparrow}^{\dagger} c_{j \uparrow}-t_{i j} c_{i \downarrow}^{\dagger} c_{j \downarrow}+\text { H.c. }\right\rangle \\
= & \sum_{n}\left\langle-t_{i j}\left(u_{i}^{n *} \gamma_{n \uparrow}^{\dagger}-v_{i}^{n} \gamma_{n \downarrow}\right)\left(u_{j}^{n} \gamma_{n \uparrow}-v_{j}^{n *} \gamma_{n \downarrow}^{\dagger}\right)\right. \\
& \left.\quad-t_{i j}\left(u_{i}^{n *} \gamma_{n \downarrow}^{\dagger}+v_{i}^{n} \gamma_{n \uparrow}\right)\left(u_{j}^{n} \gamma_{n \downarrow}+v_{j}^{n *} \gamma_{n \uparrow}^{\dagger}\right)+\text { H.c. }\right\rangle \\
=- & t_{i j} \sum_{n}\left[u_{i}^{n *} u_{j}^{n}\left\langle\gamma_{n \uparrow}^{\dagger} \gamma_{n \uparrow}\right\rangle+v_{i}^{n} v_{j}^{n *}\left\langle\gamma_{n \downarrow} \gamma_{n \downarrow}^{\dagger}\right\rangle\right. \\
& \left.+u_{i}^{n *} u_{j}^{n}\left\langle\gamma_{n \downarrow}^{\dagger} \gamma_{n \downarrow}\right\rangle+v_{i}^{n} v_{j}^{n *}\left\langle\gamma_{n \uparrow} \gamma_{n \uparrow}^{\dagger}\right\rangle+\text { H.c. }\right]
\end{aligned}
$$

Use global indices $\mathbf{u}_{i}^{n}, \mathbf{v}_{i}^{n}$ ，and E_{n} ，i．e，

$$
\begin{aligned}
& \mathbf{v}_{i}=\left(\stackrel{v_{i}^{1}}{\mathbf{v}_{i}^{1}} \cdots \cdots . \stackrel{v_{i}^{N}}{v_{i}^{N}} \frac{u_{i}^{1_{i}^{*}}}{\mathbf{v}_{i}^{N+1}} \ldots . . \frac{u_{i}^{N_{i}^{*}}}{\mathbf{v}_{i}^{2 N}}\right) \\
& \left(\begin{array}{c}
E_{1} \\
\vdots \\
E_{N} \\
E_{N+1} \\
\vdots \\
E_{2 N}
\end{array}\right)=\left(\begin{array}{c}
E_{1 \uparrow} \\
\vdots \\
E_{N \uparrow} \\
-E_{1 \downarrow} \\
\vdots \\
-E_{N \downarrow}
\end{array}\right)
\end{aligned}
$$

Thus，we obtain

$$
\left\langle\widehat{K}_{i j}^{x}\right\rangle=-t_{i j} \sum_{n}\left[\mathbf{u}_{i}^{n *} \mathbf{u}_{j}^{n} f\left(E_{n}\right)+\mathbf{v}_{i}^{n} \mathbf{v}_{j}^{n *}\left[1-f\left(E_{n}\right)\right]+\text { H.c. }\right]
$$

$$
\begin{aligned}
\left\langle\widehat{K}_{x}(i, j)\right\rangle= & -\sum_{\sigma}\left\langle t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+\text { H. c. }\right\rangle \\
=- & \left\langle t_{i j} c_{i \uparrow}^{\dagger} c_{j \uparrow}+t_{i j} c_{i \downarrow}^{\dagger} c_{j \downarrow}+t_{j i}^{*} c_{j \uparrow}^{\dagger} c_{i \uparrow}+t_{j i}^{*} c_{j \downarrow}^{\dagger} c_{i \downarrow}\right\rangle \\
=- & \sum_{n}\left[t_{i j} u_{i}^{n *} u_{j}^{n}\left\langle\gamma_{n \uparrow}^{\dagger} \gamma_{n \uparrow}\right\rangle+t_{i j} v_{i}^{n} v_{j}^{n *}\left\langle\gamma_{n \downarrow} \gamma_{n \downarrow}^{\dagger}\right\rangle+t_{i j} u_{i}^{n *} u_{j}^{n}\left\langle\gamma_{n \downarrow}^{\dagger} \gamma_{n \downarrow}\right\rangle\right. \\
& +t_{i j} v_{i}^{n} v_{j}^{n *}\left\langle\gamma_{n \uparrow} \gamma_{n \uparrow}^{\dagger}\right\rangle+t_{j i}^{*} u_{j}^{n *} u_{i}^{n}\left\langle\gamma_{n \uparrow}^{\dagger} \gamma_{n \uparrow}\right\rangle+t_{j i}^{*} v_{j}^{n} v_{i}^{n *}\left\langle\gamma_{n \downarrow} \gamma_{n \downarrow}^{\dagger}\right\rangle \\
& \left.+t_{j i}^{*} u_{j}^{n *} u_{i}^{n}\left\langle\gamma_{n \downarrow}^{\dagger} \gamma_{n \downarrow}\right\rangle+t_{j i}^{*} v_{j}^{n} v_{i}^{n *}\left\langle\gamma_{n \uparrow} \gamma_{n \uparrow}^{\dagger}\right\rangle\right] \\
=- & 2 \sum_{n} \operatorname{Im} t_{i j}\left[\mathbf{u}_{j}^{n} \mathbf{u}_{i}^{n *} f\left(E_{n}\right)+\mathbf{v}_{i}^{n} \mathbf{v}_{j}^{n *}\left(1-f\left(E_{n}\right)\right]\right.
\end{aligned}
$$

where $t_{i j}=t_{j i}^{*}$
（2）Paramagnetic response given by the transverse current－current correlation function

$$
\Lambda_{x x}(r, i \Omega)=\int_{0}^{\beta} d \tau e^{-i \Omega \tau}\left\langle T_{\tau} \hat{J}_{x}^{P}(r, \tau) \hat{J}_{x}^{P}\left(r^{\prime}, 0\right)\right\rangle
$$

Paramagnetic current density

$$
\begin{aligned}
& \hat{J}_{x}^{P}(r)=-i \sum_{\sigma}\left(t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}-t_{i j}^{*} c_{j \sigma}^{\dagger} c_{i \sigma}\right) \\
&\left\langle T_{\tau} \hat{J}_{x}^{P}(r, \tau) \hat{J}_{x}^{P}\left(r^{\prime}, 0\right)\right\rangle \\
&=-\sum_{\sigma \sigma^{\prime}}\left\langle T_{\tau}\left(t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}-t_{j i}^{*} c_{j \sigma}^{\dagger} c_{i \sigma}\right)\left(t_{i^{\prime} j^{\prime}} c_{i^{\prime} \sigma^{\prime}}^{\dagger} c_{j^{\prime} \sigma^{\prime}}-t_{j^{\prime} i^{\prime}}^{*} c_{j^{\prime} \sigma^{\prime}}^{\dagger} c_{i^{\prime} \sigma^{\prime}}\right)\right\rangle \\
&=-\sum_{\sigma \sigma^{\prime}} t_{i j} t_{i^{\prime} j^{\prime}}\left(\left\langle T_{\tau} c_{i \sigma}^{\dagger} c_{j \sigma} c_{i^{\prime} \sigma^{\prime}}^{\dagger} c_{j^{\prime} \sigma^{\prime}}\right\rangle+\left\langle T_{\tau} c_{j \sigma}^{\dagger} c_{i \sigma} c_{j^{\prime} \sigma^{\prime}}^{\dagger} c_{i^{\prime} \sigma^{\prime}}\right\rangle\right. \\
&\left.-\left\langle T_{\tau} c_{i \sigma}^{\dagger} c_{j \sigma} c_{j^{\prime} \sigma^{\prime}}^{\dagger} c_{i^{\prime} \sigma^{\prime}}\right\rangle-\left\langle T_{\tau} c_{j \sigma}^{\dagger} c_{i \sigma} c_{i^{\prime} \sigma^{\prime}}^{\dagger} c_{j^{\prime} \sigma^{\prime}}\right\rangle\right)
\end{aligned}
$$

According to Wick＇s theorem

$$
\begin{aligned}
\left\langle T_{\tau} c_{i \uparrow}^{\dagger} c_{j \uparrow} c_{i^{\prime} \uparrow}^{\dagger} c_{j^{\prime} \uparrow}\right\rangle & =\left\langle T_{\tau} c_{j \uparrow} c_{i \uparrow}^{\dagger}\right\rangle\left\langle T_{\tau} c_{j^{\prime} \uparrow} c_{i^{\prime} \uparrow}^{\dagger}\right\rangle-\left\langle T_{\tau} c_{j^{\prime} \uparrow} c_{i \uparrow}^{\dagger}\right\rangle\left\langle T_{\tau} c_{j \uparrow} c_{i^{\prime} \uparrow}^{\dagger}\right\rangle \\
& =G_{j i}^{\uparrow} G_{j^{\prime} i^{\prime}}^{\uparrow}-G_{j^{\prime} i}^{\uparrow} G_{j i^{\prime}}^{\uparrow} \\
\left\langle T_{\tau} c_{i \downarrow}^{\dagger} c_{j \downarrow} c_{i^{\prime} \downarrow}^{\dagger} c_{j^{\prime} \downarrow}\right\rangle & =\left\langle T_{\tau} c_{i \downarrow}^{\dagger} c_{j \downarrow}\right\rangle\left\langle T_{\tau} c_{i^{\prime} \downarrow}^{\dagger} c_{j^{\prime} \downarrow}\right\rangle-\left\langle T_{\tau} c_{i \downarrow}^{\dagger} c_{j^{\prime} \downarrow}\right\rangle\left\langle T_{\tau} c_{i^{\prime} \downarrow}^{\dagger} c_{j \downarrow}\right\rangle \\
& =G_{i j}^{\downarrow} G_{i^{\prime} j^{\prime}}^{\downarrow}-G_{i j^{\prime}}^{\downarrow} G_{i^{\prime} j}^{\downarrow}
\end{aligned}
$$

$$
\begin{aligned}
\left\langle T_{\tau} c_{i \uparrow}^{\dagger} c_{j \uparrow} c_{i^{\prime} \downarrow}^{\dagger} c_{j^{\prime} \downarrow}\right\rangle & =-\left\langle T_{\tau} c_{j \uparrow} c_{i \uparrow}^{\dagger}\right\rangle\left\langle T_{\tau} c_{i^{\prime} \downarrow}^{\dagger} c_{j^{\prime} \downarrow}\right\rangle+\left\langle T_{\tau} c_{i^{\prime} \downarrow}^{\dagger} c_{i \uparrow}^{\dagger}\right\rangle\left\langle T_{\tau} c_{j^{\uparrow} c_{j^{\prime} \downarrow}}\right\rangle \\
& =-G_{j i}^{\uparrow} G_{i^{\prime} j^{\prime}}^{\downarrow}+F_{i^{\prime} i}^{*} F_{j j^{\prime}} \\
\left\langle T_{\tau} c_{i \downarrow}^{\dagger} c_{j \downarrow} c_{i^{\prime} \uparrow}^{\dagger} c_{j^{\prime} \uparrow}\right\rangle & =-\left\langle T_{\tau} c_{i \downarrow}^{\dagger} c_{j \downarrow}\right\rangle\left\langle T_{\tau} c_{j^{\prime} \uparrow} c_{i^{\prime} \uparrow}^{\dagger}\right\rangle+\left\langle T_{\tau} c_{i \downarrow}^{\dagger} c_{i^{\prime} \uparrow}^{\dagger}\right\rangle\left\langle T_{\tau} c_{j^{\prime} \uparrow} c_{j \downarrow}\right\rangle \\
& =-G_{i j}^{\downarrow} G_{j^{\prime} i^{\prime}}^{\uparrow}+F_{i i^{\prime}}^{*} F_{j^{\prime} j}
\end{aligned}
$$

$$
\sum_{\sigma \sigma^{\prime}}\left\langle T_{\tau} c_{i \sigma}^{\dagger} c_{j \sigma} c_{i^{\prime} \sigma^{\prime}}^{\dagger} c_{j^{\prime} \sigma^{\prime}}\right\rangle=G_{j i}^{\uparrow} G_{j^{\prime} i^{\prime}}^{\uparrow}-G_{j^{\prime} i}^{\uparrow} G_{j i^{\prime}}^{\uparrow}+G_{i j}^{\downarrow} G_{i^{\prime} j^{\prime}}^{\downarrow}-G_{i j^{\prime}}^{\downarrow} G_{i^{\prime} j}^{\downarrow}
$$

$$
-G_{j i}^{\uparrow} G_{i^{\prime} j^{\prime}}^{\downarrow}+F_{i^{\prime} i}^{*} F_{j j^{\prime}}-G_{i j}^{\downarrow} G_{j^{\prime} i^{\prime}}^{\uparrow}+F_{i i^{\prime}}^{*} F_{j^{\prime} j}
$$

$$
\sum_{\sigma \sigma^{\prime}}\left\langle T_{\tau} c_{j \sigma}^{\dagger} c_{i \sigma} c_{j^{\prime} \sigma^{\prime}}^{\dagger} c_{i^{\prime} \sigma^{\prime}}\right\rangle=G_{i j}^{\uparrow} G_{i^{\prime} j^{\prime}}^{\uparrow}-G_{i^{\prime} j}^{\uparrow} G_{i j^{\prime}}^{\uparrow}+G_{j i}^{\downarrow} G_{j^{\prime} i^{\prime}}^{\downarrow}-G_{j i^{\prime}}^{\downarrow} G_{j^{\prime} i}^{\downarrow}
$$

$$
-G_{i j}^{\uparrow} G_{j^{\prime} i^{\prime}}^{\downarrow}+F_{j^{\prime} j}^{*} F_{i i^{\prime}}-G_{j i}^{\downarrow} G_{i^{\prime} j^{\prime}}^{\uparrow}+F_{j j^{\prime}}^{*} F_{i^{\prime} i}
$$

$\sum_{\sigma \sigma^{\prime}}\left\langle T_{\tau} c_{i \sigma}^{\dagger} c_{j \sigma} c_{j^{\prime} \sigma^{\prime}}^{\dagger} c_{i^{\prime} \sigma^{\prime}}\right\rangle=G_{j i}^{\uparrow} G_{i^{\prime} j^{\prime}}^{\uparrow}-G_{i^{\prime} i}^{\uparrow} G_{j j^{\prime}}^{\uparrow}+G_{i j}^{\downarrow} G_{j^{\prime} i^{\prime}}^{\downarrow}-G_{i i^{\prime}}^{\downarrow} G_{j^{\prime} j}^{\downarrow}$

$$
-G_{j i}^{\uparrow} G_{j^{\prime} i^{\prime}}^{\downarrow}+F_{j^{\prime} i}^{*} F_{j i^{\prime}}-G_{i j}^{\downarrow} G_{i^{\prime} j^{\prime}}^{\uparrow}+F_{i j^{\prime}}^{*} F_{i^{\prime} j}
$$

$\sum_{\sigma \sigma^{\prime}}\left\langle T_{\tau} c_{j \sigma}^{\dagger} c_{i \sigma} c_{i^{\prime} \sigma^{\prime}}^{\dagger} c_{j^{\prime} \sigma^{\prime}}\right\rangle=G_{i j}^{\uparrow} G_{j^{\prime} i^{\prime}}^{\uparrow}-G_{j^{\prime} j}^{\uparrow} G_{i i^{\prime}}^{\uparrow}+G_{j i}^{\downarrow} G_{i^{\prime} j^{\prime}}^{\downarrow}-G_{j j^{\prime}}^{\downarrow} G_{i^{\prime} i}^{\downarrow}$

$$
-G_{i j}^{\uparrow} G_{i^{\prime} j^{\prime}}^{\downarrow}+F_{i^{\prime} j}^{*} F_{i j^{\prime}}-G_{j i}^{\downarrow} G_{j^{\prime} i^{\prime}}^{\uparrow}+F_{j i^{\prime}}^{*} F_{j^{\prime} i}
$$

Since $G_{j i}^{\sigma} G_{j^{\prime} i^{\prime}}^{\sigma}$ are disconnected part which will form a bubble，we can ignore the contribution from the bubble．
$G_{j i}^{\sigma}=G_{i j}^{\sigma}$

$$
\begin{aligned}
\left\langle T_{\tau} \hat{J}_{x}^{P}(r, \tau) \hat{j}_{x}^{P}\left(r^{\prime}, 0\right)\right\rangle=- & t_{i j} t_{i^{\prime} j^{\prime}}\left(-G_{j^{\prime} i}^{\uparrow} G_{j i^{\prime}}^{\uparrow}-G_{i j^{\prime}}^{\downarrow} G_{i^{\prime} j}^{\downarrow}+F_{i^{\prime} i}^{*} F_{j j^{\prime}}+F_{i i^{\prime}}^{*} F_{j^{\prime} j}\right) \\
=- & t_{i j} t_{i^{\prime} j^{\prime}}\left(-G_{i^{\prime} j}^{\uparrow} G_{i j^{\prime}}^{\uparrow}-G_{j i^{\prime}}^{\downarrow} G_{j^{\prime} i}^{\downarrow}+F_{j^{\prime} j}^{*} F_{i i^{\prime}}+F_{j j^{\prime}}^{*} F_{i^{\prime} i}\right) \\
& +t_{i j} t_{i^{\prime} j^{\prime}}\left(-G_{i^{\prime} i}^{\uparrow} G_{j j^{\prime}}^{\uparrow}-G_{i i^{\prime}}^{\downarrow} G_{j^{\prime} j}^{\downarrow}+F_{j^{\prime} i}^{*} F_{j i^{\prime}}+F_{i j^{\prime}}^{*} F_{i^{\prime} j}\right) \\
& +t_{i j j^{\prime} t_{j^{\prime}}\left(-G_{j^{\prime} j}^{\uparrow} G_{i i^{\prime}}^{\uparrow}-G_{j j^{\prime}}^{\downarrow} G_{i^{\prime} i}^{\downarrow}+F_{i^{\prime} j}^{*} F_{i j^{\prime}}+F_{j i^{\prime}}^{*} F_{j^{\prime} i}\right)}
\end{aligned}
$$

Since
1．$G_{i^{\prime} i}^{\uparrow}$ does not contribute to the current
2．$F_{i i^{\prime}}=0$ in d－wave superconductivity

$$
\begin{aligned}
\left\langle T_{\tau} \hat{J}_{x}^{P}(r, \tau) \hat{J}_{x}^{P}\left(r^{\prime}, 0\right)\right\rangle=- & t_{i j} t_{i^{\prime} j^{\prime}}\left(-G_{j^{\prime} i}^{\uparrow} G_{j i^{\prime}}^{\uparrow}-G_{i j^{\prime}}^{\downarrow} G_{i^{\prime} j}^{\downarrow}-G_{i^{\prime} j}^{\uparrow} G_{i j^{\prime}}^{\uparrow}-G_{j i^{\prime}}^{\downarrow} G_{j^{\prime} i}^{\downarrow}\right. \\
& \left.+F_{j^{\prime} i^{\prime}}^{*} F_{j i^{\prime}}+F_{i j^{\prime}}^{*} F_{i^{\prime} j}+F_{i^{\prime} j}^{*} F_{i j^{\prime}}+F_{j i^{\prime}}^{*} F_{j^{\prime} i}\right) \\
=- & 2 t_{i j} t_{i^{\prime} j^{\prime}}\left(-G_{i^{\prime} j}^{\uparrow} G_{i j^{\prime}}^{\uparrow}-G_{i j^{\prime}}^{\downarrow} G_{i^{\prime} j}^{\downarrow}+F_{i j^{\prime}}^{*} F_{i^{\prime} j}+F_{i^{\prime} j^{\prime}}^{*} F_{i j^{\prime}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\Lambda_{x x}(r, i \Omega) & =\int_{0}^{\beta} d \tau e^{-i \Omega \tau}\left\langle T_{\tau} \hat{J}_{x}^{P}(r, \tau) \hat{J}_{x}^{P}\left(r^{\prime}, 0\right)\right\rangle \\
& =\frac{1}{\beta} \sum_{\omega} \sum_{n n^{\prime}}\left\langle T_{\tau} \hat{J}_{x}^{P}(r, \omega) \hat{J}_{x}^{P}\left(r^{\prime}, \Omega+\omega\right)\right\rangle
\end{aligned} \\
& \begin{aligned}
\frac{1}{\beta} \sum_{\omega} \sum_{n n^{\prime}} G_{i^{\prime} j}^{\uparrow} G_{i j^{\prime}}^{\uparrow}= & =\frac{1}{\beta} \sum_{\omega} \sum_{n=1} \sum_{n^{\prime}=1} \frac{\mathbf{u}_{i^{\prime}}^{n} \mathbf{u}_{j}^{n *}}{i \omega-E_{n}} \frac{\mathbf{u}_{i}^{n^{\prime}} \mathbf{u}_{j^{\prime}}^{n^{\prime} *}}{i(\Omega+\omega)-E_{n^{\prime}}} \\
& =\sum_{n=1} \sum_{n^{\prime}=1} \mathbf{u}_{i^{\prime}}^{n} \mathbf{u}_{j}^{n *} \mathbf{u}_{i}^{n^{\prime}} \mathbf{u}_{j^{\prime}}^{n^{\prime} *}
\end{aligned} \frac{f\left(E_{n}\right)-f\left(i \Omega+E_{n^{\prime}}\right)}{i \Omega+E_{n}-E_{n^{\prime}}}
\end{aligned}
$$

The Meissner effect is the current response to a static（ $\Omega=0$ ）and transverse gauge potential

$$
\frac{1}{\beta} \sum_{\omega} \sum_{n n^{\prime}} G_{i^{\prime} j \uparrow \uparrow} G_{i j^{\prime} \uparrow \uparrow}=\sum_{n=1} \sum_{n^{\prime}=1} \mathbf{u}_{i^{\prime}}^{n} \mathbf{u}_{j}^{n *} \mathbf{u}_{i}^{n^{\prime}} \mathbf{u}_{j^{\prime}}^{n^{\prime}} \frac{f\left(E_{n}\right)-f\left(E_{n^{\prime}}\right)}{E_{n}-E_{n^{\prime}}}
$$

$$
\Lambda_{x x}(i, j, \Omega=0)=-2 t_{i j} t_{i^{\prime} j^{\prime}} \sum_{n=1} \sum_{n^{\prime}=1}\left(-\mathbf{u}_{i^{\prime}}^{n} \mathbf{u}_{j}^{n *} \mathbf{u}_{i}^{n^{\prime}} \mathbf{u}_{j^{\prime}}^{n^{\prime} *}-\mathbf{v}_{i}^{n} \mathbf{v}_{j^{\prime}}^{n^{\prime}} \mathbf{v}_{i^{\prime}}^{n^{\prime}} \mathbf{v}_{j}^{n^{\prime} *}\right.
$$

Let

$$
\left.-\mathbf{v}_{i}^{n} \mathbf{u}_{j^{\prime}}^{n *} \mathbf{u}_{i^{\prime}}^{n^{\prime}} \mathbf{v}_{j}^{n^{\prime} *}-\mathbf{v}_{i^{\prime}}^{n} \mathbf{u}_{j}^{n *} \mathbf{u}_{i}^{n^{\prime}} \mathbf{v}_{j^{\prime}}^{n^{\prime} *}\right) \frac{f\left(E_{n}\right)-f\left(E_{n^{\prime}}\right)}{E_{n}-E_{n^{\prime}}}
$$

$$
\begin{aligned}
& \boldsymbol{\Gamma}_{i j}^{n n^{\prime}}=t_{i j}\left(\mathbf{u}_{j}^{n *} \mathbf{u}_{i}^{n^{\prime}}-\mathbf{v}_{i}^{n} \mathbf{v}_{j}^{n^{\prime} *}\right) \\
& \Lambda_{x x}(i, j, \Omega=0)=-2 t_{i j} t_{i^{\prime} j^{\prime}} \sum_{n=1} \sum_{n^{\prime}=1} \boldsymbol{\Gamma}_{i j}^{n n^{\prime}} \boldsymbol{\Gamma}_{i^{\prime} j^{\prime}}^{n n^{\prime}} \frac{f\left(E_{n}\right)-f\left(E_{n^{\prime}}\right)}{E_{n}-E_{n^{\prime}}} \\
& \rho_{s}(i, j)=\left\langle-K_{x}(i, j)\right\rangle-\Lambda_{x x}(i, j, \Omega=0) \\
& =- \\
& \quad \sum_{n=1} \sum_{n^{\prime}=1} \Gamma_{i j}^{n n^{\prime}} \boldsymbol{\Gamma}_{i^{\prime} j^{\prime}}^{n n^{\prime}} \frac{f\left(E_{n}\right)-f\left(E_{n^{\prime}}\right)}{E_{n}-E_{n^{\prime}}} \\
& \quad-\sum_{n} t_{i j}\left[\mathbf{u}_{j}^{n} \mathbf{u}_{i}^{n *} f\left(E_{n}\right)+\mathbf{v}_{i}^{n} \mathbf{v}_{j}^{n *}\left(1-f\left(E_{n}\right)\right]\right.
\end{aligned}
$$

（3）The local or site－specific superfluid density is then given by Let $j=i$

$$
\begin{aligned}
\rho_{s}(i)= & \left\langle-\widehat{K}_{x}(i)\right\rangle-\Lambda_{x x}(i, \Omega=0) \\
= & -\sum_{n=1} \sum_{n^{\prime}=1} \Gamma_{i}^{n n^{\prime}} \boldsymbol{\Gamma}_{i+x}^{n n^{\prime}} \frac{f\left(E_{n}\right)-f\left(E_{n^{\prime}}\right)}{E_{n}-E_{n^{\prime}}} \\
& -\sum_{n} t_{i i+x}\left[\mathbf{u}_{i+x}^{n} \mathbf{u}_{i}^{n *} f\left(E_{n}\right)+\mathbf{v}_{i}^{n} \mathbf{v}_{i+x}^{n *}\left(1-f\left(E_{n}\right)\right]\right. \\
\boldsymbol{\Gamma}_{i}^{n n^{\prime}}= & t_{i i+x}\left(\mathbf{u}_{i+x}^{n *} \mathbf{u}_{i}^{n^{\prime}}-\mathbf{v}_{i}^{n} \mathbf{v}_{i+x}^{n^{\prime} *}\right)
\end{aligned}
$$

（4）The superfluid density is evaluated as

$$
\frac{\rho_{s}(T)}{4}=\left\langle-\widehat{K}_{x}\right\rangle-\Lambda_{x x}\left(q_{x}=0, q_{y}=0, \Omega=0\right)
$$

where $\left\langle-\widehat{K}_{x}\right\rangle$ is average kinetic energy along \hat{x} direction，and $\Lambda_{x x}(q, \Omega)$ is a diagonal element of the current－current correlation．
$\left\langle\widehat{K}_{x}\right\rangle=\frac{1}{N} \sum_{i} \sum_{\sigma}\left\langle\left[t_{i, i+x} c_{i \sigma}^{\dagger} c_{i+x \sigma}+\right.\right.$ H．c．$\left.]\right\rangle$
$\Lambda_{x x}\left(q, i \Omega_{n}\right)=\frac{1}{N} \int_{0}^{1 / T} d \tau e^{-i \Omega_{n} \tau}\left\langle T_{\tau} \hat{J}_{x}^{P}(q, \tau) \hat{J}_{x}^{P}(-q, 0)\right\rangle$
The retarded current－current correlation function is obtained by analytically continuing $i \Omega_{n} \rightarrow \Omega+i \delta$

$$
\Lambda_{x x}(q, \Omega)=\frac{-i}{N} \int_{-\infty}^{t} d t^{\prime} e^{-i \Omega\left(t-t^{\prime}\right)}\left\langle T_{\tau} \hat{J}_{x}^{P}(q, t) \hat{J}_{x}^{P}\left(-q, t^{\prime}\right)\right\rangle
$$

4－5 Spin Relaxation Time

A．SPIN－SPIN CORRELATION

（1）Spin－spin correlation
$\chi_{i j}^{+-}(\tau)=\left\langle\widehat{\mathrm{T}}\left[\hat{S}_{i}^{+}(\tau) \hat{S}_{j}^{-}(0)\right]\right\rangle$
Let

$$
\hat{S}_{i}^{+}=\hat{c}_{i \uparrow}^{\dagger} \hat{c}_{i \downarrow} \cdots \cdots \text { Spin raise operator }
$$

$\hat{S}_{i}^{-}=\hat{c}_{i \downarrow}^{\dagger} \hat{c}_{i \uparrow} \cdots \cdot$ Spin lower operator
$\chi_{i j}^{+-}(\tau)=\left\langle\widehat{\mathrm{T}}\left[c_{i \uparrow}^{\dagger}(\tau) c_{i \downarrow}(\tau) c_{j \downarrow}^{\dagger}(0) c_{j \uparrow}(0)\right]\right\rangle$
Use Wick＇s theorem，the product of four operators can be factorized into sums of products of pairs，

$$
\begin{aligned}
\chi_{i j}^{+-}(\tau)=\langle\widehat{\mathrm{T}} & {\left.\left[c_{j \uparrow}(0) c_{i \uparrow}^{\dagger}(\tau)\right]\right\rangle\left\langle\widehat{\mathrm{T}}\left[c_{j \downarrow}^{\dagger}(0) c_{i \downarrow}(\tau)\right]\right\rangle } \\
& -\left\langle\widehat{\mathrm{T}}\left[c_{j \uparrow}(0) c_{i \downarrow}(\tau)\right]\right\rangle\left\langle\widehat{\mathrm{T}}\left[c_{j \downarrow}^{\dagger}(0) c_{i \uparrow}^{\dagger}(\tau)\right]\right\rangle
\end{aligned}
$$

Assume

$$
\begin{gathered}
G_{j i \uparrow}(-\tau)=G_{j i \uparrow}(0, \tau)=\left\langle\widehat{\mathrm{T}}\left[c_{j \uparrow}(0) c_{i \uparrow}^{\dagger}(\tau)\right]\right\rangle \\
G_{j i \downarrow}(\tau)=G_{j i \downarrow}(\tau, 0)=\left\langle\widehat{\mathrm{T}}\left[c_{j \downarrow}^{\dagger}(0) c_{i \downarrow}(\tau)\right]\right\rangle \\
F_{j i}(-\tau)=F_{j i}(0, \tau)=\left\langle\widehat{\mathrm{T}}\left[c_{j \uparrow}(0) c_{i \downarrow}(\tau)\right]\right\rangle \\
F_{j i}^{*}(\tau)=F_{j i}^{*}(\tau, 0)=\left\langle\widehat{\mathrm{T}}\left[c_{j \downarrow}^{\dagger}(0) c_{i \uparrow}^{\dagger}(\tau)\right]\right\rangle \\
\chi_{i j}^{+-}(\tau)=G_{j i \uparrow}(-\tau) G_{j i \downarrow}(\tau)-F_{j i}(-\tau) F_{j i}^{*}(\tau)
\end{gathered}
$$

（2）The Fourier transformation of χ

$$
\begin{aligned}
\chi_{i j}^{+-}\left(i \Omega_{l}\right)= & \int_{0}^{\beta} e^{i \Omega_{l} \tau} \chi_{i j}^{+-}(\tau) d \tau \\
= & \int_{0}^{\beta} e^{i \Omega_{l} \tau} \frac{1}{\beta^{2}} \sum_{\omega_{l} \omega_{l}^{\prime}} e^{i \omega_{l} \tau} e^{-i \omega_{l}^{\prime} \tau} \\
& \times\left[G_{j i \uparrow}\left(i \omega_{n}\right) G_{j i \downarrow}\left(i \omega_{n}^{\prime}\right)-F_{j i}\left(i \omega_{n}\right) F_{j i}^{*}\left(i \omega_{n}^{\prime}\right)\right] d \tau
\end{aligned}
$$

Since

$$
\int_{0}^{\beta} e^{i\left(\Omega_{n}+\omega_{n}-\omega_{n}^{\prime}\right) \tau} d \tau=\beta \delta\left(\Omega_{n}+\omega_{n}-\omega_{n}^{\prime}\right)
$$

$$
\begin{aligned}
\chi_{i j}^{+-}\left(i \Omega_{n}\right)= & \frac{1}{\beta^{2}} \sum_{\omega_{n} \omega_{n}^{\prime}} \beta \delta\left(\Omega_{n}+\omega_{n}-\omega_{n}^{\prime}\right) \\
& \times\left[G_{j i \uparrow}\left(i \omega_{n}\right) G_{j i \downarrow}\left(i \omega_{n}^{\prime}\right)-F_{j i}\left(i \omega_{n}\right) F_{j i}^{*}\left(i \omega_{n}^{\prime}\right)\right] \\
= & \frac{1}{\beta} \sum_{\omega_{n}^{\prime}}\left[G_{j i \uparrow}\left(i \omega_{n}\right) G_{j i \downarrow}\left(i \Omega_{n}+i \omega_{n}\right)-F_{j i}\left(i \omega_{n}\right) F_{j i}^{*}\left(i \Omega_{n}+i \omega_{n}\right)\right] \\
= & \frac{1}{\beta} \sum_{\omega_{n}, n, m}\left[\frac{\mathbf{u}_{j}^{n} \mathbf{u}_{i}^{n *}}{i \omega_{n}-E_{n}} \cdot \frac{\mathbf{v}_{j}^{m} \mathbf{v}_{i}^{m *}}{i \Omega_{n}+i \omega_{n}-E_{m}}\right. \\
& \left.-\frac{\mathbf{u}_{j}^{n} \mathbf{v}_{i}^{n *}}{i \omega_{n}-E_{n}} \cdot \frac{\mathbf{v}_{j}^{m} \mathbf{u}_{i}^{m *}}{i \Omega_{n}+i \omega_{n}-E_{m}}\right]
\end{aligned}
$$

where we have used global indices $\mathbf{u}_{i}^{n}, \mathbf{v}_{i}^{n}$ ，and E_{n} ，i．e，

$$
\begin{aligned}
& \mathbf{u}_{i}=(\stackrel{\overbrace{i}^{1}}{u_{i}^{1}} \cdots \cdots \stackrel{\overbrace{i}^{N}}{u_{i}^{N}} \overbrace{i}^{-v_{i}^{1 *}}{\tilde{\mathbf{u}_{i}^{N+1}}}_{\cdots}^{v_{i}} \stackrel{\overbrace{i}^{2 N}}{v_{i}^{N *}}) \\
& \mathbf{v}_{i}=(\overbrace{\mathbf{v}_{i}^{1}}^{v_{i}^{i}} \cdots \cdots \overbrace{\mathbf{v}_{i}^{N}}^{v_{i}^{N}} \overbrace{\mathbf{v}_{i}^{N+1}}^{u_{i}^{*}} \cdots \cdots \overbrace{\mathbf{v}_{i}^{2 N}}^{u_{i}^{N}}) \\
& \left(\begin{array}{c}
E_{1} \\
\vdots \\
E_{N} \\
E_{N+1} \\
\vdots \\
E_{2 N}
\end{array}\right)=\left(\begin{array}{c}
E_{1 \uparrow} \\
\vdots \\
E_{N \uparrow} \\
-E_{1 \downarrow} \\
\vdots \\
-E_{N \downarrow}
\end{array}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
\frac{1}{\beta} \sum_{\omega_{n}^{\prime}} & {\left[\frac{1}{i \omega_{n}-E_{n}} \cdot \frac{1}{i \Omega_{n}+i \omega_{n}-E_{m}}\right] } \\
& =\frac{1}{\beta} \sum_{\omega_{n}^{\prime}}\left[\frac{1}{i \omega_{n}-E_{n}}-\frac{1}{i \Omega_{n}+i \omega_{n}-E_{m}}\right] \frac{1}{i \Omega_{n}+E_{n}-E_{m}} \\
& =\frac{f\left(E_{n}\right)-f\left(E_{m}-i \Omega_{n}\right)}{i \Omega_{n}+E_{n}-E_{m}} \\
\chi_{i j}^{+-}\left(i \Omega_{n}\right) & =\sum_{n, m}\left(\mathbf{u}_{j}^{n} \mathbf{u}_{i}^{n *} \mathbf{v}_{j}^{m} \mathbf{v}_{i}^{m *}-\mathbf{u}_{j}^{n} \mathbf{v}_{i}^{n *} \mathbf{v}_{j}^{m} \mathbf{u}_{i}^{m *}\right) \frac{f\left(E_{n}\right)-f\left(E_{m}-i \Omega_{n}\right)}{i \Omega_{n}+E_{n}-E_{m}}
\end{aligned}
$$

（3）Analytic continuation

$$
i \Omega \rightarrow \Omega+i \eta
$$

$$
\begin{aligned}
\chi_{i j}^{+-}(\Omega+i \eta)= & \sum_{n, m}\left(\mathbf{u}_{j}^{n} \mathbf{u}_{i}^{n *} \mathbf{v}_{j}^{m} \mathbf{v}_{i}^{m *}-\mathbf{u}_{j}^{n} \mathbf{v}_{i}^{n *} \mathbf{v}_{j}^{m} \mathbf{u}_{i}^{m *}\right) \\
& \times \frac{f\left(E_{n}\right)-f\left(E_{m}-\Omega_{n}-i \eta\right)}{\Omega_{n}+i \eta+E_{n}-E_{m}}
\end{aligned}
$$

B．SPIN RELAXATION TIME（ \mathbf{T}_{1} ）

（1）The spin－lattice relaxation time is

$$
\left.\frac{1}{T_{1} T}\right|_{\Omega_{n} \rightarrow 0}=\lim _{\Omega_{n} \rightarrow 0} \frac{1}{\Omega_{n}} \Im\left(\chi_{i i}^{+-}\left(i \Omega_{n} \rightarrow \Omega_{n}+i \eta\right)\right)
$$

where

$$
\begin{aligned}
\mathfrak{J}\left(\chi_{i i}^{+-}\left(i \Omega_{n} \rightarrow \Omega_{n}+i \eta\right)\right)=\sum_{n, m} & \left(\mathbf{u}_{i}^{n} \mathbf{u}_{i}^{n *} \mathbf{v}_{i}^{m} \mathbf{v}_{i}^{m *}-\mathbf{u}_{i}^{n} \mathbf{v}_{i}^{n *} \mathbf{v}_{i}^{m} \mathbf{u}_{i}^{m *}\right) \\
& \times \mathfrak{J}\left(\frac{f\left(E_{n}\right)-f\left(E_{m}-\Omega_{n}-i \eta\right)}{\Omega_{n}+i \eta+E_{n}-E_{m}}\right)
\end{aligned}
$$

（2）Since

$$
\begin{aligned}
& \mathbf{u}_{i}^{n} \mathbf{u}_{i}^{n *} \mathbf{v}_{i}^{m} \mathbf{v}_{i}^{m *}-\mathbf{u}_{i}^{n} \mathbf{v}_{i}^{n *} \mathbf{v}_{i}^{m} \mathbf{u}_{i}^{m *}=\left|\mathbf{u}_{i}^{n}\right|^{2}\left|\mathbf{v}_{i}^{m}\right|^{2}-\mathbf{u}_{i}^{n} \mathbf{v}_{i}^{n *} \mathbf{v}_{i}^{m} \mathbf{u}_{i}^{m *} \\
& \mathfrak{J}\left(\frac{1}{\Omega_{n}+i \eta+E_{n}-E_{m}}\right)=(-\pi) \delta\left(\Omega_{n}+E_{n}-E_{m}\right)
\end{aligned}
$$

Thus，we obtain

$$
\begin{aligned}
\mathfrak{J}\left(\chi_{i i}^{+-}\left(\Omega_{n}+i \eta\right)\right)= & \sum_{n, n^{\prime}}\left(\left|\mathbf{u}_{i}^{n}\right|^{2}\left|\mathbf{v}_{i}^{m}\right|^{2}-\mathbf{u}_{i}^{n} \mathbf{v}_{i}^{n *} \mathbf{v}_{i}^{m} \mathbf{u}_{i}^{m *}\right) \\
& \times\left[f\left(E_{n}\right)-f\left(E_{m}-\Omega_{n}-i \eta\right)\right](-\pi) \delta\left(\Omega_{n}+E_{n}-E_{m}\right) \\
\left.\frac{1}{T_{1} T}\right|_{\Omega_{n} \rightarrow 0}= & \lim _{\Omega_{n} \rightarrow 0} \sum_{n, n^{\prime}}\left(\left|\mathbf{u}_{i}^{n}\right|^{2}\left|\mathbf{v}_{i}^{m}\right|^{2}-\mathbf{u}_{i}^{n} \mathbf{v}_{i}^{n *} \mathbf{v}_{i}^{m} \mathbf{u}_{i}^{m *}\right) \\
& \times \frac{f\left(E_{n}\right)-f\left(E_{m}-\Omega_{n}-i \eta\right)}{\Omega_{n}}(-\pi) \delta\left(\Omega_{n}+E_{n}-E_{m}\right) \\
= & \sum_{n, n^{\prime}}\left(\left|\mathbf{u}_{i}^{n}\right|^{2}\left|\mathbf{v}_{i}^{m}\right|^{2}-\mathbf{u}_{i}^{n} \mathbf{v}_{i}^{n *} \mathbf{v}_{i}^{m} \mathbf{u}_{i}^{m *}\right)\left[-f^{\prime}\left(E_{n}\right) \pi \delta\left(E_{n}-E_{m}\right)\right]
\end{aligned}
$$

